"""Implementation of :class:`IntegerRing` class. """ from sympy.external.gmpy import MPZ, GROUND_TYPES from sympy.core.numbers import int_valued from sympy.polys.domains.groundtypes import ( SymPyInteger, factorial, gcdex, gcd, lcm, sqrt, is_square, sqrtrem, ) from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.ring import Ring from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public import math @public class IntegerRing(Ring, CharacteristicZero, SimpleDomain): r"""The domain ``ZZ`` representing the integers `\mathbb{Z}`. The :py:class:`IntegerRing` class represents the ring of integers as a :py:class:`~.Domain` in the domain system. :py:class:`IntegerRing` is a super class of :py:class:`PythonIntegerRing` and :py:class:`GMPYIntegerRing` one of which will be the implementation for :ref:`ZZ` depending on whether or not ``gmpy`` or ``gmpy2`` is installed. See also ======== Domain """ rep = 'ZZ' alias = 'ZZ' dtype = MPZ zero = dtype(0) one = dtype(1) tp = type(one) is_IntegerRing = is_ZZ = True is_Numerical = True is_PID = True has_assoc_Ring = True has_assoc_Field = True def __init__(self): """Allow instantiation of this domain. """ def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ if isinstance(other, IntegerRing): return True else: return NotImplemented def __hash__(self): """Compute a hash value for this domain. """ return hash('ZZ') def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyInteger(int(a)) def from_sympy(self, a): """Convert SymPy's Integer to ``dtype``. """ if a.is_Integer: return MPZ(a.p) elif int_valued(a): return MPZ(int(a)) else: raise CoercionFailed("expected an integer, got %s" % a) def get_field(self): r"""Return the associated field of fractions :ref:`QQ` Returns ======= :ref:`QQ`: The associated field of fractions :ref:`QQ`, a :py:class:`~.Domain` representing the rational numbers `\mathbb{Q}`. Examples ======== >>> from sympy import ZZ >>> ZZ.get_field() QQ """ from sympy.polys.domains import QQ return QQ def algebraic_field(self, *extension, alias=None): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. Parameters ========== *extension : One or more :py:class:`~.Expr`. Generators of the extension. These should be expressions that are algebraic over `\mathbb{Q}`. alias : str, :py:class:`~.Symbol`, None, optional (default=None) If provided, this will be used as the alias symbol for the primitive element of the returned :py:class:`~.AlgebraicField`. Returns ======= :py:class:`~.AlgebraicField` A :py:class:`~.Domain` representing the algebraic field extension. Examples ======== >>> from sympy import ZZ, sqrt >>> ZZ.algebraic_field(sqrt(2)) QQ """ return self.get_field().algebraic_field(*extension, alias=alias) def from_AlgebraicField(K1, a, K0): """Convert a :py:class:`~.ANP` object to :ref:`ZZ`. See :py:meth:`~.Domain.convert`. """ if a.is_ground: return K1.convert(a.LC(), K0.dom) def log(self, a, b): r"""Logarithm of *a* to the base *b*. Parameters ========== a: number b: number Returns ======= $\\lfloor\log(a, b)\\rfloor$: Floor of the logarithm of *a* to the base *b* Examples ======== >>> from sympy import ZZ >>> ZZ.log(ZZ(8), ZZ(2)) 3 >>> ZZ.log(ZZ(9), ZZ(2)) 3 Notes ===== This function uses ``math.log`` which is based on ``float`` so it will fail for large integer arguments. """ return self.dtype(int(math.log(int(a), b))) def from_FF(K1, a, K0): """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ return MPZ(K0.to_int(a)) def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ return MPZ(K0.to_int(a)) def from_ZZ(K1, a, K0): """Convert Python's ``int`` to GMPY's ``mpz``. """ return MPZ(a) def from_ZZ_python(K1, a, K0): """Convert Python's ``int`` to GMPY's ``mpz``. """ return MPZ(a) def from_QQ(K1, a, K0): """Convert Python's ``Fraction`` to GMPY's ``mpz``. """ if a.denominator == 1: return MPZ(a.numerator) def from_QQ_python(K1, a, K0): """Convert Python's ``Fraction`` to GMPY's ``mpz``. """ if a.denominator == 1: return MPZ(a.numerator) def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """ return MPZ(K0.to_int(a)) def from_ZZ_gmpy(K1, a, K0): """Convert GMPY's ``mpz`` to GMPY's ``mpz``. """ return a def from_QQ_gmpy(K1, a, K0): """Convert GMPY ``mpq`` to GMPY's ``mpz``. """ if a.denominator == 1: return a.numerator def from_RealField(K1, a, K0): """Convert mpmath's ``mpf`` to GMPY's ``mpz``. """ p, q = K0.to_rational(a) if q == 1: # XXX: If MPZ is flint.fmpz and p is a gmpy2.mpz, then we need # to convert via int because fmpz and mpz do not know about each # other. return MPZ(int(p)) def from_GaussianIntegerRing(K1, a, K0): if a.y == 0: return a.x def from_EX(K1, a, K0): """Convert ``Expression`` to GMPY's ``mpz``. """ if a.is_Integer: return K1.from_sympy(a) def gcdex(self, a, b): """Compute extended GCD of ``a`` and ``b``. """ h, s, t = gcdex(a, b) # XXX: This conditional logic should be handled somewhere else. if GROUND_TYPES == 'gmpy': return s, t, h else: return h, s, t def gcd(self, a, b): """Compute GCD of ``a`` and ``b``. """ return gcd(a, b) def lcm(self, a, b): """Compute LCM of ``a`` and ``b``. """ return lcm(a, b) def sqrt(self, a): """Compute square root of ``a``. """ return sqrt(a) def is_square(self, a): """Return ``True`` if ``a`` is a square. Explanation =========== An integer is a square if and only if there exists an integer ``b`` such that ``b * b == a``. """ return is_square(a) def exsqrt(self, a): """Non-negative square root of ``a`` if ``a`` is a square. See also ======== is_square """ if a < 0: return None root, rem = sqrtrem(a) if rem != 0: return None return root def factorial(self, a): """Compute factorial of ``a``. """ return factorial(a) ZZ = IntegerRing()