"""Implementation of :class:`PolynomialRing` class. """ from sympy.polys.agca.modules import FreeModulePolyRing from sympy.polys.domains.compositedomain import CompositeDomain from sympy.polys.domains.old_fractionfield import FractionField from sympy.polys.domains.ring import Ring from sympy.polys.orderings import monomial_key, build_product_order from sympy.polys.polyclasses import DMP, DMF from sympy.polys.polyerrors import (GeneratorsNeeded, PolynomialError, CoercionFailed, ExactQuotientFailed, NotReversible) from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder from sympy.utilities import public from sympy.utilities.iterables import iterable @public class PolynomialRingBase(Ring, CompositeDomain): """ Base class for generalized polynomial rings. This base class should be used for uniform access to generalized polynomial rings. Subclasses only supply information about the element storage etc. Do not instantiate. """ has_assoc_Ring = True has_assoc_Field = True default_order = "grevlex" def __init__(self, dom, *gens, **opts): if not gens: raise GeneratorsNeeded("generators not specified") lev = len(gens) - 1 self.ngens = len(gens) self.zero = self.dtype.zero(lev, dom) self.one = self.dtype.one(lev, dom) self.domain = self.dom = dom self.symbols = self.gens = gens # NOTE 'order' may not be set if inject was called through CompositeDomain self.order = opts.get('order', monomial_key(self.default_order)) def set_domain(self, dom): """Return a new polynomial ring with given domain. """ return self.__class__(dom, *self.gens, order=self.order) def new(self, element): return self.dtype(element, self.dom, len(self.gens) - 1) def _ground_new(self, element): return self.one.ground_new(element) def _from_dict(self, element): return DMP.from_dict(element, len(self.gens) - 1, self.dom) def __str__(self): s_order = str(self.order) orderstr = ( " order=" + s_order) if s_order != self.default_order else "" return str(self.dom) + '[' + ','.join(map(str, self.gens)) + orderstr + ']' def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.dom, self.gens, self.order)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, PolynomialRingBase) and \ self.dtype == other.dtype and self.dom == other.dom and \ self.gens == other.gens and self.order == other.order def from_ZZ(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_QQ(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1._ground_new(K1.dom.convert(a, K0)) def from_AlgebraicField(K1, a, K0): """Convert a ``ANP`` object to ``dtype``. """ if K1.dom == K0: return K1._ground_new(a) def from_PolynomialRing(K1, a, K0): """Convert a ``PolyElement`` object to ``dtype``. """ if K1.gens == K0.symbols: if K1.dom == K0.dom: return K1(dict(a)) # set the correct ring else: convert_dom = lambda c: K1.dom.convert_from(c, K0.dom) return K1._from_dict({m: convert_dom(c) for m, c in a.items()}) else: monoms, coeffs = _dict_reorder(a.to_dict(), K0.symbols, K1.gens) if K1.dom != K0.dom: coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] return K1._from_dict(dict(zip(monoms, coeffs))) def from_GlobalPolynomialRing(K1, a, K0): """Convert a ``DMP`` object to ``dtype``. """ if K1.gens == K0.gens: if K1.dom != K0.dom: a = a.convert(K1.dom) return K1(a.to_list()) else: monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens) if K1.dom != K0.dom: coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] return K1(dict(zip(monoms, coeffs))) def get_field(self): """Returns a field associated with ``self``. """ return FractionField(self.dom, *self.gens) def poly_ring(self, *gens): """Returns a polynomial ring, i.e. ``K[X]``. """ raise NotImplementedError('nested domains not allowed') def frac_field(self, *gens): """Returns a fraction field, i.e. ``K(X)``. """ raise NotImplementedError('nested domains not allowed') def revert(self, a): try: return self.exquo(self.one, a) except (ExactQuotientFailed, ZeroDivisionError): raise NotReversible('%s is not a unit' % a) def gcdex(self, a, b): """Extended GCD of ``a`` and ``b``. """ return a.gcdex(b) def gcd(self, a, b): """Returns GCD of ``a`` and ``b``. """ return a.gcd(b) def lcm(self, a, b): """Returns LCM of ``a`` and ``b``. """ return a.lcm(b) def factorial(self, a): """Returns factorial of ``a``. """ return self.dtype(self.dom.factorial(a)) def _vector_to_sdm(self, v, order): """ For internal use by the modules class. Convert an iterable of elements of this ring into a sparse distributed module element. """ raise NotImplementedError def _sdm_to_dics(self, s, n): """Helper for _sdm_to_vector.""" from sympy.polys.distributedmodules import sdm_to_dict dic = sdm_to_dict(s) res = [{} for _ in range(n)] for k, v in dic.items(): res[k[0]][k[1:]] = v return res def _sdm_to_vector(self, s, n): """ For internal use by the modules class. Convert a sparse distributed module into a list of length ``n``. Examples ======== >>> from sympy import QQ, ilex >>> from sympy.abc import x, y >>> R = QQ.old_poly_ring(x, y, order=ilex) >>> L = [((1, 1, 1), QQ(1)), ((0, 1, 0), QQ(1)), ((0, 0, 1), QQ(2))] >>> R._sdm_to_vector(L, 2) [DMF([[1], [2, 0]], [[1]], QQ), DMF([[1, 0], []], [[1]], QQ)] """ dics = self._sdm_to_dics(s, n) # NOTE this works for global and local rings! return [self(x) for x in dics] def free_module(self, rank): """ Generate a free module of rank ``rank`` over ``self``. Examples ======== >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).free_module(2) QQ[x]**2 """ return FreeModulePolyRing(self, rank) def _vector_to_sdm_helper(v, order): """Helper method for common code in Global and Local poly rings.""" from sympy.polys.distributedmodules import sdm_from_dict d = {} for i, e in enumerate(v): for key, value in e.to_dict().items(): d[(i,) + key] = value return sdm_from_dict(d, order) @public class GlobalPolynomialRing(PolynomialRingBase): """A true polynomial ring, with objects DMP. """ is_PolynomialRing = is_Poly = True dtype = DMP def new(self, element): if isinstance(element, dict): return DMP.from_dict(element, len(self.gens) - 1, self.dom) elif element in self.dom: return self._ground_new(self.dom.convert(element)) else: return self.dtype(element, self.dom, len(self.gens) - 1) def from_FractionField(K1, a, K0): """ Convert a ``DMF`` object to ``DMP``. Examples ======== >>> from sympy.polys.polyclasses import DMP, DMF >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> f = DMF(([ZZ(1), ZZ(1)], [ZZ(1)]), ZZ) >>> K = ZZ.old_frac_field(x) >>> F = ZZ.old_poly_ring(x).from_FractionField(f, K) >>> F == DMP([ZZ(1), ZZ(1)], ZZ) True >>> type(F) # doctest: +SKIP """ if a.denom().is_one: return K1.from_GlobalPolynomialRing(a.numer(), K0) def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return basic_from_dict(a.to_sympy_dict(), *self.gens) def from_sympy(self, a): """Convert SymPy's expression to ``dtype``. """ try: rep, _ = dict_from_basic(a, gens=self.gens) except PolynomialError: raise CoercionFailed("Cannot convert %s to type %s" % (a, self)) for k, v in rep.items(): rep[k] = self.dom.from_sympy(v) return DMP.from_dict(rep, self.ngens - 1, self.dom) def is_positive(self, a): """Returns True if ``LC(a)`` is positive. """ return self.dom.is_positive(a.LC()) def is_negative(self, a): """Returns True if ``LC(a)`` is negative. """ return self.dom.is_negative(a.LC()) def is_nonpositive(self, a): """Returns True if ``LC(a)`` is non-positive. """ return self.dom.is_nonpositive(a.LC()) def is_nonnegative(self, a): """Returns True if ``LC(a)`` is non-negative. """ return self.dom.is_nonnegative(a.LC()) def _vector_to_sdm(self, v, order): """ Examples ======== >>> from sympy import lex, QQ >>> from sympy.abc import x, y >>> R = QQ.old_poly_ring(x, y) >>> f = R.convert(x + 2*y) >>> g = R.convert(x * y) >>> R._vector_to_sdm([f, g], lex) [((1, 1, 1), 1), ((0, 1, 0), 1), ((0, 0, 1), 2)] """ return _vector_to_sdm_helper(v, order) class GeneralizedPolynomialRing(PolynomialRingBase): """A generalized polynomial ring, with objects DMF. """ dtype = DMF def new(self, a): """Construct an element of ``self`` domain from ``a``. """ res = self.dtype(a, self.dom, len(self.gens) - 1) # make sure res is actually in our ring if res.denom().terms(order=self.order)[0][0] != (0,)*len(self.gens): from sympy.printing.str import sstr raise CoercionFailed("denominator %s not allowed in %s" % (sstr(res), self)) return res def __contains__(self, a): try: a = self.convert(a) except CoercionFailed: return False return a.denom().terms(order=self.order)[0][0] == (0,)*len(self.gens) def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) / basic_from_dict(a.denom().to_sympy_dict(), *self.gens)) def from_sympy(self, a): """Convert SymPy's expression to ``dtype``. """ p, q = a.as_numer_denom() num, _ = dict_from_basic(p, gens=self.gens) den, _ = dict_from_basic(q, gens=self.gens) for k, v in num.items(): num[k] = self.dom.from_sympy(v) for k, v in den.items(): den[k] = self.dom.from_sympy(v) return self((num, den)).cancel() def exquo(self, a, b): """Exact quotient of ``a`` and ``b``. """ # Elements are DMF that will always divide (except 0). The result is # not guaranteed to be in this ring, so we have to check that. r = a / b try: r = self.new((r.num, r.den)) except CoercionFailed: raise ExactQuotientFailed(a, b, self) return r def from_FractionField(K1, a, K0): dmf = K1.get_field().from_FractionField(a, K0) return K1((dmf.num, dmf.den)) def _vector_to_sdm(self, v, order): """ Turn an iterable into a sparse distributed module. Note that the vector is multiplied by a unit first to make all entries polynomials. Examples ======== >>> from sympy import ilex, QQ >>> from sympy.abc import x, y >>> R = QQ.old_poly_ring(x, y, order=ilex) >>> f = R.convert((x + 2*y) / (1 + x)) >>> g = R.convert(x * y) >>> R._vector_to_sdm([f, g], ilex) [((0, 0, 1), 2), ((0, 1, 0), 1), ((1, 1, 1), 1), ((1, 2, 1), 1)] """ # NOTE this is quite inefficient... u = self.one.numer() for x in v: u *= x.denom() return _vector_to_sdm_helper([x.numer()*u/x.denom() for x in v], order) @public def PolynomialRing(dom, *gens, **opts): r""" Create a generalized multivariate polynomial ring. A generalized polynomial ring is defined by a ground field `K`, a set of generators (typically `x_1, \ldots, x_n`) and a monomial order `<`. The monomial order can be global, local or mixed. In any case it induces a total ordering on the monomials, and there exists for every (non-zero) polynomial `f \in K[x_1, \ldots, x_n]` a well-defined "leading monomial" `LM(f) = LM(f, >)`. One can then define a multiplicative subset `S = S_> = \{f \in K[x_1, \ldots, x_n] | LM(f) = 1\}`. The generalized polynomial ring corresponding to the monomial order is `R = S^{-1}K[x_1, \ldots, x_n]`. If `>` is a so-called global order, that is `1` is the smallest monomial, then we just have `S = K` and `R = K[x_1, \ldots, x_n]`. Examples ======== A few examples may make this clearer. >>> from sympy.abc import x, y >>> from sympy import QQ Our first ring uses global lexicographic order. >>> R1 = QQ.old_poly_ring(x, y, order=(("lex", x, y),)) The second ring uses local lexicographic order. Note that when using a single (non-product) order, you can just specify the name and omit the variables: >>> R2 = QQ.old_poly_ring(x, y, order="ilex") The third and fourth rings use a mixed orders: >>> o1 = (("ilex", x), ("lex", y)) >>> o2 = (("lex", x), ("ilex", y)) >>> R3 = QQ.old_poly_ring(x, y, order=o1) >>> R4 = QQ.old_poly_ring(x, y, order=o2) We will investigate what elements of `K(x, y)` are contained in the various rings. >>> L = [x, 1/x, y/(1 + x), 1/(1 + y), 1/(1 + x*y)] >>> test = lambda R: [f in R for f in L] The first ring is just `K[x, y]`: >>> test(R1) [True, False, False, False, False] The second ring is R1 localised at the maximal ideal (x, y): >>> test(R2) [True, False, True, True, True] The third ring is R1 localised at the prime ideal (x): >>> test(R3) [True, False, True, False, True] Finally the fourth ring is R1 localised at `S = K[x, y] \setminus yK[y]`: >>> test(R4) [True, False, False, True, False] """ order = opts.get("order", GeneralizedPolynomialRing.default_order) if iterable(order): order = build_product_order(order, gens) order = monomial_key(order) opts['order'] = order if order.is_global: return GlobalPolynomialRing(dom, *gens, **opts) else: return GeneralizedPolynomialRing(dom, *gens, **opts)