""" Module for the DDM class. The DDM class is an internal representation used by DomainMatrix. The letters DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix representation. Basic usage: >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> A.shape (2, 2) >>> A [[0, 1], [-1, 0]] >>> type(A) >>> A @ A [[-1, 0], [0, -1]] The ddm_* functions are designed to operate on DDM as well as on an ordinary list of lists: >>> from sympy.polys.matrices.dense import ddm_idet >>> ddm_idet(A, QQ) 1 >>> ddm_idet([[0, 1], [-1, 0]], QQ) 1 >>> A [[-1, 0], [0, -1]] Note that ddm_idet modifies the input matrix in-place. It is recommended to use the DDM.det method as a friendlier interface to this instead which takes care of copying the matrix: >>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> B.det() 1 Normally DDM would not be used directly and is just part of the internal representation of DomainMatrix which adds further functionality including e.g. unifying domains. The dense format used by DDM is a list of lists of elements e.g. the 2x2 identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass of list and its list items are plain lists. Elements are accessed as e.g. ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the jth column of that row. Subclassing list makes e.g. iteration and indexing very efficient. We do not override __getitem__ because it would lose that benefit. The core routines are implemented by the ddm_* functions defined in dense.py. Those functions are intended to be able to operate on a raw list-of-lists representation of matrices with most functions operating in-place. The DDM class takes care of copying etc and also stores a Domain object associated with its elements. This makes it possible to implement things like A + B with domain checking and also shape checking so that the list of lists representation is friendlier. """ from itertools import chain from sympy.external.gmpy import GROUND_TYPES from sympy.utilities.decorator import doctest_depends_on from .exceptions import ( DMBadInputError, DMDomainError, DMNonSquareMatrixError, DMShapeError, ) from sympy.polys.domains import QQ from .dense import ( ddm_transpose, ddm_iadd, ddm_isub, ddm_ineg, ddm_imul, ddm_irmul, ddm_imatmul, ddm_irref, ddm_irref_den, ddm_idet, ddm_iinv, ddm_ilu_split, ddm_ilu_solve, ddm_berk, ) from .lll import ddm_lll, ddm_lll_transform if GROUND_TYPES != 'flint': __doctest_skip__ = ['DDM.to_dfm', 'DDM.to_dfm_or_ddm'] class DDM(list): """Dense matrix based on polys domain elements This is a list subclass and is a wrapper for a list of lists that supports basic matrix arithmetic +, -, *, **. """ fmt = 'dense' is_DFM = False is_DDM = True def __init__(self, rowslist, shape, domain): if not (isinstance(rowslist, list) and all(type(row) is list for row in rowslist)): raise DMBadInputError("rowslist must be a list of lists") m, n = shape if len(rowslist) != m or any(len(row) != n for row in rowslist): raise DMBadInputError("Inconsistent row-list/shape") super().__init__(rowslist) self.shape = (m, n) self.rows = m self.cols = n self.domain = domain def getitem(self, i, j): return self[i][j] def setitem(self, i, j, value): self[i][j] = value def extract_slice(self, slice1, slice2): ddm = [row[slice2] for row in self[slice1]] rows = len(ddm) cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2]) return DDM(ddm, (rows, cols), self.domain) def extract(self, rows, cols): ddm = [] for i in rows: rowi = self[i] ddm.append([rowi[j] for j in cols]) return DDM(ddm, (len(rows), len(cols)), self.domain) @classmethod def from_list(cls, rowslist, shape, domain): """ Create a :class:`DDM` from a list of lists. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM.from_list([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) >>> A [[0, 1], [-1, 0]] >>> A == DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ) True See Also ======== from_list_flat """ return cls(rowslist, shape, domain) @classmethod def from_ddm(cls, other): return other.copy() def to_list(self): """ Convert to a list of lists. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_list() [[1, 2], [3, 4]] See Also ======== to_list_flat sympy.polys.matrices.domainmatrix.DomainMatrix.to_list """ return list(self) def to_list_flat(self): """ Convert to a flat list of elements. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_list_flat() [1, 2, 3, 4] >>> A == DDM.from_list_flat(A.to_list_flat(), A.shape, A.domain) True See Also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.to_list_flat """ flat = [] for row in self: flat.extend(row) return flat @classmethod def from_list_flat(cls, flat, shape, domain): """ Create a :class:`DDM` from a flat list of elements. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices.ddm import DDM >>> A = DDM.from_list_flat([1, 2, 3, 4], (2, 2), QQ) >>> A [[1, 2], [3, 4]] >>> A == DDM.from_list_flat(A.to_list_flat(), A.shape, A.domain) True See Also ======== to_list_flat sympy.polys.matrices.domainmatrix.DomainMatrix.from_list_flat """ assert type(flat) is list rows, cols = shape if not (len(flat) == rows*cols): raise DMBadInputError("Inconsistent flat-list shape") lol = [flat[i*cols:(i+1)*cols] for i in range(rows)] return cls(lol, shape, domain) def flatiter(self): return chain.from_iterable(self) def flat(self): items = [] for row in self: items.extend(row) return items def to_flat_nz(self): """ Convert to a flat list of nonzero elements and data. Explanation =========== This is used to operate on a list of the elements of a matrix and then reconstruct a matrix using :meth:`from_flat_nz`. Zero elements are included in the list but that may change in the future. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> elements, data = A.to_flat_nz() >>> elements [1, 2, 3, 4] >>> A == DDM.from_flat_nz(elements, data, A.domain) True See Also ======== from_flat_nz sympy.polys.matrices.sdm.SDM.to_flat_nz sympy.polys.matrices.domainmatrix.DomainMatrix.to_flat_nz """ return self.to_sdm().to_flat_nz() @classmethod def from_flat_nz(cls, elements, data, domain): """ Reconstruct a :class:`DDM` after calling :meth:`to_flat_nz`. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> elements, data = A.to_flat_nz() >>> elements [1, 2, 3, 4] >>> A == DDM.from_flat_nz(elements, data, A.domain) True See Also ======== to_flat_nz sympy.polys.matrices.sdm.SDM.from_flat_nz sympy.polys.matrices.domainmatrix.DomainMatrix.from_flat_nz """ return SDM.from_flat_nz(elements, data, domain).to_ddm() def to_dod(self): """ Convert to a dictionary of dictionaries (dod) format. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dod() {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}} See Also ======== from_dod sympy.polys.matrices.sdm.SDM.to_dod sympy.polys.matrices.domainmatrix.DomainMatrix.to_dod """ dod = {} for i, row in enumerate(self): row = {j:e for j, e in enumerate(row) if e} if row: dod[i] = row return dod @classmethod def from_dod(cls, dod, shape, domain): """ Create a :class:`DDM` from a dictionary of dictionaries (dod) format. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> dod = {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}} >>> A = DDM.from_dod(dod, (2, 2), QQ) >>> A [[1, 2], [3, 4]] See Also ======== to_dod sympy.polys.matrices.sdm.SDM.from_dod sympy.polys.matrices.domainmatrix.DomainMatrix.from_dod """ rows, cols = shape lol = [[domain.zero] * cols for _ in range(rows)] for i, row in dod.items(): for j, element in row.items(): lol[i][j] = element return DDM(lol, shape, domain) def to_dok(self): """ Convert :class:`DDM` to dictionary of keys (dok) format. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dok() {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4} See Also ======== from_dok sympy.polys.matrices.sdm.SDM.to_dok sympy.polys.matrices.domainmatrix.DomainMatrix.to_dok """ dok = {} for i, row in enumerate(self): for j, element in enumerate(row): if element: dok[i, j] = element return dok @classmethod def from_dok(cls, dok, shape, domain): """ Create a :class:`DDM` from a dictionary of keys (dok) format. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> dok = {(0, 0): 1, (0, 1): 2, (1, 0): 3, (1, 1): 4} >>> A = DDM.from_dok(dok, (2, 2), QQ) >>> A [[1, 2], [3, 4]] See Also ======== to_dok sympy.polys.matrices.sdm.SDM.from_dok sympy.polys.matrices.domainmatrix.DomainMatrix.from_dok """ rows, cols = shape lol = [[domain.zero] * cols for _ in range(rows)] for (i, j), element in dok.items(): lol[i][j] = element return DDM(lol, shape, domain) def iter_values(self): """ Iterater over the non-zero values of the matrix. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[QQ(1), QQ(0)], [QQ(3), QQ(4)]], (2, 2), QQ) >>> list(A.iter_values()) [1, 3, 4] See Also ======== iter_items to_list_flat sympy.polys.matrices.domainmatrix.DomainMatrix.iter_values """ for row in self: yield from filter(None, row) def iter_items(self): """ Iterate over indices and values of nonzero elements of the matrix. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[QQ(1), QQ(0)], [QQ(3), QQ(4)]], (2, 2), QQ) >>> list(A.iter_items()) [((0, 0), 1), ((1, 0), 3), ((1, 1), 4)] See Also ======== iter_values to_dok sympy.polys.matrices.domainmatrix.DomainMatrix.iter_items """ for i, row in enumerate(self): for j, element in enumerate(row): if element: yield (i, j), element def to_ddm(self): """ Convert to a :class:`DDM`. This just returns ``self`` but exists to parallel the corresponding method in other matrix types like :class:`~.SDM`. See Also ======== to_sdm to_dfm to_dfm_or_ddm sympy.polys.matrices.sdm.SDM.to_ddm sympy.polys.matrices.domainmatrix.DomainMatrix.to_ddm """ return self def to_sdm(self): """ Convert to a :class:`~.SDM`. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_sdm() {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}} >>> type(A.to_sdm()) See Also ======== SDM sympy.polys.matrices.sdm.SDM.to_ddm """ return SDM.from_list(self, self.shape, self.domain) @doctest_depends_on(ground_types=['flint']) def to_dfm(self): """ Convert to :class:`~.DDM` to :class:`~.DFM`. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dfm() [[1, 2], [3, 4]] >>> type(A.to_dfm()) See Also ======== DFM sympy.polys.matrices._dfm.DFM.to_ddm """ return DFM(list(self), self.shape, self.domain) @doctest_depends_on(ground_types=['flint']) def to_dfm_or_ddm(self): """ Convert to :class:`~.DFM` if possible or otherwise return self. Examples ======== >>> from sympy.polys.matrices.ddm import DDM >>> from sympy import QQ >>> A = DDM([[1, 2], [3, 4]], (2, 2), QQ) >>> A.to_dfm_or_ddm() [[1, 2], [3, 4]] >>> type(A.to_dfm_or_ddm()) See Also ======== to_dfm to_ddm sympy.polys.matrices.domainmatrix.DomainMatrix.to_dfm_or_ddm """ if DFM._supports_domain(self.domain): return self.to_dfm() return self def convert_to(self, K): Kold = self.domain if K == Kold: return self.copy() rows = [[K.convert_from(e, Kold) for e in row] for row in self] return DDM(rows, self.shape, K) def __str__(self): rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self] return '[%s]' % ', '.join(rowsstr) def __repr__(self): cls = type(self).__name__ rows = list.__repr__(self) return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain) def __eq__(self, other): if not isinstance(other, DDM): return False return (super().__eq__(other) and self.domain == other.domain) def __ne__(self, other): return not self.__eq__(other) @classmethod def zeros(cls, shape, domain): z = domain.zero m, n = shape rowslist = [[z] * n for _ in range(m)] return DDM(rowslist, shape, domain) @classmethod def ones(cls, shape, domain): one = domain.one m, n = shape rowlist = [[one] * n for _ in range(m)] return DDM(rowlist, shape, domain) @classmethod def eye(cls, size, domain): if isinstance(size, tuple): m, n = size elif isinstance(size, int): m = n = size one = domain.one ddm = cls.zeros((m, n), domain) for i in range(min(m, n)): ddm[i][i] = one return ddm def copy(self): copyrows = [row[:] for row in self] return DDM(copyrows, self.shape, self.domain) def transpose(self): rows, cols = self.shape if rows: ddmT = ddm_transpose(self) else: ddmT = [[]] * cols return DDM(ddmT, (cols, rows), self.domain) def __add__(a, b): if not isinstance(b, DDM): return NotImplemented return a.add(b) def __sub__(a, b): if not isinstance(b, DDM): return NotImplemented return a.sub(b) def __neg__(a): return a.neg() def __mul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __rmul__(a, b): if b in a.domain: return a.mul(b) else: return NotImplemented def __matmul__(a, b): if isinstance(b, DDM): return a.matmul(b) else: return NotImplemented @classmethod def _check(cls, a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DMShapeError(msg) def add(a, b): """a + b""" a._check(a, '+', b, a.shape, b.shape) c = a.copy() ddm_iadd(c, b) return c def sub(a, b): """a - b""" a._check(a, '-', b, a.shape, b.shape) c = a.copy() ddm_isub(c, b) return c def neg(a): """-a""" b = a.copy() ddm_ineg(b) return b def mul(a, b): c = a.copy() ddm_imul(c, b) return c def rmul(a, b): c = a.copy() ddm_irmul(c, b) return c def matmul(a, b): """a @ b (matrix product)""" m, o = a.shape o2, n = b.shape a._check(a, '*', b, o, o2) c = a.zeros((m, n), a.domain) ddm_imatmul(c, a, b) return c def mul_elementwise(a, b): assert a.shape == b.shape assert a.domain == b.domain c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)] return DDM(c, a.shape, a.domain) def hstack(A, *B): """Horizontally stacks :py:class:`~.DDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) [[1, 2, 5, 6], [3, 4, 7, 8]] >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) [[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]] """ Anew = list(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkrows == rows assert Bk.domain == domain cols += Bkcols for i, Bki in enumerate(Bk): Anew[i].extend(Bki) return DDM(Anew, (rows, cols), A.domain) def vstack(A, *B): """Vertically stacks :py:class:`~.DDM` matrices. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) [[1, 2], [3, 4], [5, 6], [7, 8]] >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] """ Anew = list(A.copy()) rows, cols = A.shape domain = A.domain for Bk in B: Bkrows, Bkcols = Bk.shape assert Bkcols == cols assert Bk.domain == domain rows += Bkrows Anew.extend(Bk.copy()) return DDM(Anew, (rows, cols), A.domain) def applyfunc(self, func, domain): elements = [list(map(func, row)) for row in self] return DDM(elements, self.shape, domain) def nnz(a): """Number of non-zero entries in :py:class:`~.DDM` matrix. See Also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.nnz """ return sum(sum(map(bool, row)) for row in a) def scc(a): """Strongly connected components of a square matrix *a*. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.scc() [[0], [1]] See also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.scc """ return a.to_sdm().scc() @classmethod def diag(cls, values, domain): """Returns a square diagonal matrix with *values* on the diagonal. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices.sdm import DDM >>> DDM.diag([ZZ(1), ZZ(2), ZZ(3)], ZZ) [[1, 0, 0], [0, 2, 0], [0, 0, 3]] See also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.diag """ return SDM.diag(values, domain).to_ddm() def rref(a): """Reduced-row echelon form of a and list of pivots. See Also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.rref Higher level interface to this function. sympy.polys.matrices.dense.ddm_irref The underlying algorithm. """ b = a.copy() K = a.domain partial_pivot = K.is_RealField or K.is_ComplexField pivots = ddm_irref(b, _partial_pivot=partial_pivot) return b, pivots def rref_den(a): """Reduced-row echelon form of a with denominator and list of pivots See Also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.rref_den Higher level interface to this function. sympy.polys.matrices.dense.ddm_irref_den The underlying algorithm. """ b = a.copy() K = a.domain denom, pivots = ddm_irref_den(b, K) return b, denom, pivots def nullspace(a): """Returns a basis for the nullspace of a. The domain of the matrix must be a field. See Also ======== rref sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace """ rref, pivots = a.rref() return rref.nullspace_from_rref(pivots) def nullspace_from_rref(a, pivots=None): """Compute the nullspace of a matrix from its rref. The domain of the matrix can be any domain. Returns a tuple (basis, nonpivots). See Also ======== sympy.polys.matrices.domainmatrix.DomainMatrix.nullspace The higher level interface to this function. """ m, n = a.shape K = a.domain if pivots is None: pivots = [] last_pivot = -1 for i in range(m): ai = a[i] for j in range(last_pivot+1, n): if ai[j]: last_pivot = j pivots.append(j) break if not pivots: return (a.eye(n, K), list(range(n))) # After rref the pivots are all one but after rref_den they may not be. pivot_val = a[0][pivots[0]] basis = [] nonpivots = [] for i in range(n): if i in pivots: continue nonpivots.append(i) vec = [pivot_val if i == j else K.zero for j in range(n)] for ii, jj in enumerate(pivots): vec[jj] -= a[ii][i] basis.append(vec) basis_ddm = DDM(basis, (len(basis), n), K) return (basis_ddm, nonpivots) def particular(a): return a.to_sdm().particular().to_ddm() def det(a): """Determinant of a""" m, n = a.shape if m != n: raise DMNonSquareMatrixError("Determinant of non-square matrix") b = a.copy() K = b.domain deta = ddm_idet(b, K) return deta def inv(a): """Inverse of a""" m, n = a.shape if m != n: raise DMNonSquareMatrixError("Determinant of non-square matrix") ainv = a.copy() K = a.domain ddm_iinv(ainv, a, K) return ainv def lu(a): """L, U decomposition of a""" m, n = a.shape K = a.domain U = a.copy() L = a.eye(m, K) swaps = ddm_ilu_split(L, U, K) return L, U, swaps def lu_solve(a, b): """x where a*x = b""" m, n = a.shape m2, o = b.shape a._check(a, 'lu_solve', b, m, m2) if not a.domain.is_Field: raise DMDomainError("lu_solve requires a field") L, U, swaps = a.lu() x = a.zeros((n, o), a.domain) ddm_ilu_solve(x, L, U, swaps, b) return x def charpoly(a): """Coefficients of characteristic polynomial of a""" K = a.domain m, n = a.shape if m != n: raise DMNonSquareMatrixError("Charpoly of non-square matrix") vec = ddm_berk(a, K) coeffs = [vec[i][0] for i in range(n+1)] return coeffs def is_zero_matrix(self): """ Says whether this matrix has all zero entries. """ zero = self.domain.zero return all(Mij == zero for Mij in self.flatiter()) def is_upper(self): """ Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """ zero = self.domain.zero return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i]) def is_lower(self): """ Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """ zero = self.domain.zero return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:]) def is_diagonal(self): """ Says whether this matrix is diagonal. True can be returned even if the matrix is not square. """ return self.is_upper() and self.is_lower() def diagonal(self): """ Returns a list of the elements from the diagonal of the matrix. """ m, n = self.shape return [self[i][i] for i in range(min(m, n))] def lll(A, delta=QQ(3, 4)): return ddm_lll(A, delta=delta) def lll_transform(A, delta=QQ(3, 4)): return ddm_lll_transform(A, delta=delta) from .sdm import SDM from .dfm import DFM