""" Routines for computing eigenvectors with DomainMatrix. """ from sympy.core.symbol import Dummy from ..agca.extensions import FiniteExtension from ..factortools import dup_factor_list from ..polyroots import roots from ..polytools import Poly from ..rootoftools import CRootOf from .domainmatrix import DomainMatrix def dom_eigenvects(A, l=Dummy('lambda')): charpoly = A.charpoly() rows, cols = A.shape domain = A.domain _, factors = dup_factor_list(charpoly, domain) rational_eigenvects = [] algebraic_eigenvects = [] for base, exp in factors: if len(base) == 2: field = domain eigenval = -base[1] / base[0] EE_items = [ [eigenval if i == j else field.zero for j in range(cols)] for i in range(rows)] EE = DomainMatrix(EE_items, (rows, cols), field) basis = (A - EE).nullspace(divide_last=True) rational_eigenvects.append((field, eigenval, exp, basis)) else: minpoly = Poly.from_list(base, l, domain=domain) field = FiniteExtension(minpoly) eigenval = field(l) AA_items = [ [Poly.from_list([item], l, domain=domain).rep for item in row] for row in A.rep.to_ddm()] AA_items = [[field(item) for item in row] for row in AA_items] AA = DomainMatrix(AA_items, (rows, cols), field) EE_items = [ [eigenval if i == j else field.zero for j in range(cols)] for i in range(rows)] EE = DomainMatrix(EE_items, (rows, cols), field) basis = (AA - EE).nullspace(divide_last=True) algebraic_eigenvects.append((field, minpoly, exp, basis)) return rational_eigenvects, algebraic_eigenvects def dom_eigenvects_to_sympy( rational_eigenvects, algebraic_eigenvects, Matrix, **kwargs ): result = [] for field, eigenvalue, multiplicity, eigenvects in rational_eigenvects: eigenvects = eigenvects.rep.to_ddm() eigenvalue = field.to_sympy(eigenvalue) new_eigenvects = [ Matrix([field.to_sympy(x) for x in vect]) for vect in eigenvects] result.append((eigenvalue, multiplicity, new_eigenvects)) for field, minpoly, multiplicity, eigenvects in algebraic_eigenvects: eigenvects = eigenvects.rep.to_ddm() l = minpoly.gens[0] eigenvects = [[field.to_sympy(x) for x in vect] for vect in eigenvects] degree = minpoly.degree() minpoly = minpoly.as_expr() eigenvals = roots(minpoly, l, **kwargs) if len(eigenvals) != degree: eigenvals = [CRootOf(minpoly, l, idx) for idx in range(degree)] for eigenvalue in eigenvals: new_eigenvects = [ Matrix([x.subs(l, eigenvalue) for x in vect]) for vect in eigenvects] result.append((eigenvalue, multiplicity, new_eigenvects)) return result