from __future__ import annotations from math import floor as mfloor from sympy.polys.domains import ZZ, QQ from sympy.polys.matrices.exceptions import DMRankError, DMShapeError, DMValueError, DMDomainError def _ddm_lll(x, delta=QQ(3, 4), return_transform=False): if QQ(1, 4) >= delta or delta >= QQ(1, 1): raise DMValueError("delta must lie in range (0.25, 1)") if x.shape[0] > x.shape[1]: raise DMShapeError("input matrix must have shape (m, n) with m <= n") if x.domain != ZZ: raise DMDomainError("input matrix domain must be ZZ") m = x.shape[0] n = x.shape[1] k = 1 y = x.copy() y_star = x.zeros((m, n), QQ) mu = x.zeros((m, m), QQ) g_star = [QQ(0, 1) for _ in range(m)] half = QQ(1, 2) T = x.eye(m, ZZ) if return_transform else None linear_dependent_error = "input matrix contains linearly dependent rows" def closest_integer(x): return ZZ(mfloor(x + half)) def lovasz_condition(k: int) -> bool: return g_star[k] >= ((delta - mu[k][k - 1] ** 2) * g_star[k - 1]) def mu_small(k: int, j: int) -> bool: return abs(mu[k][j]) <= half def dot_rows(x, y, rows: tuple[int, int]): return sum(x[rows[0]][z] * y[rows[1]][z] for z in range(x.shape[1])) def reduce_row(T, mu, y, rows: tuple[int, int]): r = closest_integer(mu[rows[0]][rows[1]]) y[rows[0]] = [y[rows[0]][z] - r * y[rows[1]][z] for z in range(n)] mu[rows[0]][:rows[1]] = [mu[rows[0]][z] - r * mu[rows[1]][z] for z in range(rows[1])] mu[rows[0]][rows[1]] -= r if return_transform: T[rows[0]] = [T[rows[0]][z] - r * T[rows[1]][z] for z in range(m)] for i in range(m): y_star[i] = [QQ.convert_from(z, ZZ) for z in y[i]] for j in range(i): row_dot = dot_rows(y, y_star, (i, j)) try: mu[i][j] = row_dot / g_star[j] except ZeroDivisionError: raise DMRankError(linear_dependent_error) y_star[i] = [y_star[i][z] - mu[i][j] * y_star[j][z] for z in range(n)] g_star[i] = dot_rows(y_star, y_star, (i, i)) while k < m: if not mu_small(k, k - 1): reduce_row(T, mu, y, (k, k - 1)) if lovasz_condition(k): for l in range(k - 2, -1, -1): if not mu_small(k, l): reduce_row(T, mu, y, (k, l)) k += 1 else: nu = mu[k][k - 1] alpha = g_star[k] + nu ** 2 * g_star[k - 1] try: beta = g_star[k - 1] / alpha except ZeroDivisionError: raise DMRankError(linear_dependent_error) mu[k][k - 1] = nu * beta g_star[k] = g_star[k] * beta g_star[k - 1] = alpha y[k], y[k - 1] = y[k - 1], y[k] mu[k][:k - 1], mu[k - 1][:k - 1] = mu[k - 1][:k - 1], mu[k][:k - 1] for i in range(k + 1, m): xi = mu[i][k] mu[i][k] = mu[i][k - 1] - nu * xi mu[i][k - 1] = mu[k][k - 1] * mu[i][k] + xi if return_transform: T[k], T[k - 1] = T[k - 1], T[k] k = max(k - 1, 1) assert all(lovasz_condition(i) for i in range(1, m)) assert all(mu_small(i, j) for i in range(m) for j in range(i)) return y, T def ddm_lll(x, delta=QQ(3, 4)): return _ddm_lll(x, delta=delta, return_transform=False)[0] def ddm_lll_transform(x, delta=QQ(3, 4)): return _ddm_lll(x, delta=delta, return_transform=True)