"""Efficient functions for generating orthogonal polynomials.""" from sympy.core.symbol import Dummy from sympy.polys.densearith import (dup_mul, dup_mul_ground, dup_lshift, dup_sub, dup_add, dup_sub_term, dup_sub_ground, dup_sqr) from sympy.polys.domains import ZZ, QQ from sympy.polys.polytools import named_poly from sympy.utilities import public def dup_jacobi(n, a, b, K): """Low-level implementation of Jacobi polynomials.""" if n < 1: return [K.one] m2, m1 = [K.one], [(a+b)/K(2) + K.one, (a-b)/K(2)] for i in range(2, n+1): den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2)) f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den) f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den) f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den p0 = dup_mul_ground(m1, f0, K) p1 = dup_mul_ground(dup_lshift(m1, 1, K), f1, K) p2 = dup_mul_ground(m2, f2, K) m2, m1 = m1, dup_sub(dup_add(p0, p1, K), p2, K) return m1 @public def jacobi_poly(n, a, b, x=None, polys=False): r"""Generates the Jacobi polynomial `P_n^{(a,b)}(x)`. Parameters ========== n : int Degree of the polynomial. a Lower limit of minimal domain for the list of coefficients. b Upper limit of minimal domain for the list of coefficients. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_jacobi, None, "Jacobi polynomial", (x, a, b), polys) def dup_gegenbauer(n, a, K): """Low-level implementation of Gegenbauer polynomials.""" if n < 1: return [K.one] m2, m1 = [K.one], [K(2)*a, K.zero] for i in range(2, n+1): p1 = dup_mul_ground(dup_lshift(m1, 1, K), K(2)*(a-K.one)/K(i) + K(2), K) p2 = dup_mul_ground(m2, K(2)*(a-K.one)/K(i) + K.one, K) m2, m1 = m1, dup_sub(p1, p2, K) return m1 def gegenbauer_poly(n, a, x=None, polys=False): r"""Generates the Gegenbauer polynomial `C_n^{(a)}(x)`. Parameters ========== n : int Degree of the polynomial. x : optional a Decides minimal domain for the list of coefficients. polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_gegenbauer, None, "Gegenbauer polynomial", (x, a), polys) def dup_chebyshevt(n, K): """Low-level implementation of Chebyshev polynomials of the first kind.""" if n < 1: return [K.one] # When n is small, it is faster to directly calculate the recurrence relation. if n < 64: # The threshold serves as a heuristic return _dup_chebyshevt_rec(n, K) return _dup_chebyshevt_prod(n, K) def _dup_chebyshevt_rec(n, K): r""" Chebyshev polynomials of the first kind using recurrence. Explanation =========== Chebyshev polynomials of the first kind are defined by the recurrence relation: .. math:: T_0(x) &= 1\\ T_1(x) &= x\\ T_n(x) &= 2xT_{n-1}(x) - T_{n-2}(x) This function calculates the Chebyshev polynomial of the first kind using the above recurrence relation. Parameters ========== n : int n is a nonnegative integer. K : domain """ m2, m1 = [K.one], [K.one, K.zero] for _ in range(n - 1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K) return m1 def _dup_chebyshevt_prod(n, K): r""" Chebyshev polynomials of the first kind using recursive products. Explanation =========== Computes Chebyshev polynomials of the first kind using .. math:: T_{2n}(x) &= 2T_n^2(x) - 1\\ T_{2n+1}(x) &= 2T_{n+1}(x)T_n(x) - x This is faster than ``_dup_chebyshevt_rec`` for large ``n``. Parameters ========== n : int n is a nonnegative integer. K : domain """ m2, m1 = [K.one, K.zero], [K(2), K.zero, -K.one] for i in bin(n)[3:]: c = dup_sub_term(dup_mul_ground(dup_mul(m1, m2, K), K(2), K), K.one, 1, K) if i == '1': m2, m1 = c, dup_sub_ground(dup_mul_ground(dup_sqr(m1, K), K(2), K), K.one, K) else: m2, m1 = dup_sub_ground(dup_mul_ground(dup_sqr(m2, K), K(2), K), K.one, K), c return m2 def dup_chebyshevu(n, K): """Low-level implementation of Chebyshev polynomials of the second kind.""" if n < 1: return [K.one] m2, m1 = [K.one], [K(2), K.zero] for i in range(2, n+1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2), K), m2, K) return m1 @public def chebyshevt_poly(n, x=None, polys=False): r"""Generates the Chebyshev polynomial of the first kind `T_n(x)`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_chebyshevt, ZZ, "Chebyshev polynomial of the first kind", (x,), polys) @public def chebyshevu_poly(n, x=None, polys=False): r"""Generates the Chebyshev polynomial of the second kind `U_n(x)`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_chebyshevu, ZZ, "Chebyshev polynomial of the second kind", (x,), polys) def dup_hermite(n, K): """Low-level implementation of Hermite polynomials.""" if n < 1: return [K.one] m2, m1 = [K.one], [K(2), K.zero] for i in range(2, n+1): a = dup_lshift(m1, 1, K) b = dup_mul_ground(m2, K(i-1), K) m2, m1 = m1, dup_mul_ground(dup_sub(a, b, K), K(2), K) return m1 def dup_hermite_prob(n, K): """Low-level implementation of probabilist's Hermite polynomials.""" if n < 1: return [K.one] m2, m1 = [K.one], [K.one, K.zero] for i in range(2, n+1): a = dup_lshift(m1, 1, K) b = dup_mul_ground(m2, K(i-1), K) m2, m1 = m1, dup_sub(a, b, K) return m1 @public def hermite_poly(n, x=None, polys=False): r"""Generates the Hermite polynomial `H_n(x)`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_hermite, ZZ, "Hermite polynomial", (x,), polys) @public def hermite_prob_poly(n, x=None, polys=False): r"""Generates the probabilist's Hermite polynomial `He_n(x)`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_hermite_prob, ZZ, "probabilist's Hermite polynomial", (x,), polys) def dup_legendre(n, K): """Low-level implementation of Legendre polynomials.""" if n < 1: return [K.one] m2, m1 = [K.one], [K.one, K.zero] for i in range(2, n+1): a = dup_mul_ground(dup_lshift(m1, 1, K), K(2*i-1, i), K) b = dup_mul_ground(m2, K(i-1, i), K) m2, m1 = m1, dup_sub(a, b, K) return m1 @public def legendre_poly(n, x=None, polys=False): r"""Generates the Legendre polynomial `P_n(x)`. Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_legendre, QQ, "Legendre polynomial", (x,), polys) def dup_laguerre(n, alpha, K): """Low-level implementation of Laguerre polynomials.""" m2, m1 = [K.zero], [K.one] for i in range(1, n+1): a = dup_mul(m1, [-K.one/K(i), (alpha-K.one)/K(i) + K(2)], K) b = dup_mul_ground(m2, (alpha-K.one)/K(i) + K.one, K) m2, m1 = m1, dup_sub(a, b, K) return m1 @public def laguerre_poly(n, x=None, alpha=0, polys=False): r"""Generates the Laguerre polynomial `L_n^{(\alpha)}(x)`. Parameters ========== n : int Degree of the polynomial. x : optional alpha : optional Decides minimal domain for the list of coefficients. polys : bool, optional If True, return a Poly, otherwise (default) return an expression. """ return named_poly(n, dup_laguerre, None, "Laguerre polynomial", (x, alpha), polys) def dup_spherical_bessel_fn(n, K): """Low-level implementation of fn(n, x).""" if n < 1: return [K.one, K.zero] m2, m1 = [K.one], [K.one, K.zero] for i in range(2, n+1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(2*i-1), K), m2, K) return dup_lshift(m1, 1, K) def dup_spherical_bessel_fn_minus(n, K): """Low-level implementation of fn(-n, x).""" m2, m1 = [K.one, K.zero], [K.zero] for i in range(2, n+1): m2, m1 = m1, dup_sub(dup_mul_ground(dup_lshift(m1, 1, K), K(3-2*i), K), m2, K) return m1 def spherical_bessel_fn(n, x=None, polys=False): """ Coefficients for the spherical Bessel functions. These are only needed in the jn() function. The coefficients are calculated from: fn(0, z) = 1/z fn(1, z) = 1/z**2 fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z) Parameters ========== n : int Degree of the polynomial. x : optional polys : bool, optional If True, return a Poly, otherwise (default) return an expression. Examples ======== >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn >>> from sympy import Symbol >>> z = Symbol("z") >>> fn(1, z) z**(-2) >>> fn(2, z) -1/z + 3/z**3 >>> fn(3, z) -6/z**2 + 15/z**4 >>> fn(4, z) 1/z - 45/z**3 + 105/z**5 """ if x is None: x = Dummy("x") f = dup_spherical_bessel_fn_minus if n < 0 else dup_spherical_bessel_fn return named_poly(abs(n), f, ZZ, "", (QQ(1)/x,), polys)