from hypothesis import given from hypothesis import strategies as st from sympy.abc import x from sympy.polys.polytools import Poly def polys(*, nonzero=False, domain="ZZ"): # This is a simple strategy, but sufficient the tests below elems = {"ZZ": st.integers(), "QQ": st.fractions()} coeff_st = st.lists(elems[domain]) if nonzero: coeff_st = coeff_st.filter(any) return st.builds(Poly, coeff_st, st.just(x), domain=st.just(domain)) @given(f=polys(), g=polys(), r=polys()) def test_gcd_hypothesis(f, g, r): gcd_1 = f.gcd(g) gcd_2 = g.gcd(f) assert gcd_1 == gcd_2 # multiply by r gcd_3 = g.gcd(f + r * g) assert gcd_1 == gcd_3 @given(f_z=polys(), g_z=polys(nonzero=True)) def test_poly_hypothesis_integers(f_z, g_z): remainder_z = f_z.rem(g_z) assert g_z.degree() >= remainder_z.degree() or remainder_z.degree() == 0 @given(f_q=polys(domain="QQ"), g_q=polys(nonzero=True, domain="QQ")) def test_poly_hypothesis_rationals(f_q, g_q): remainder_q = f_q.rem(g_q) assert g_q.degree() >= remainder_q.degree() or remainder_q.degree() == 0