"""Tests for OO layer of several polynomial representations. """ from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.domains import ZZ, QQ from sympy.polys.polyclasses import DMP, DMF, ANP from sympy.polys.polyerrors import (CoercionFailed, ExactQuotientFailed, NotInvertible) from sympy.polys.specialpolys import f_polys from sympy.testing.pytest import raises, warns_deprecated_sympy f_0, f_1, f_2, f_3, f_4, f_5, f_6 = [ f.to_dense() for f in f_polys() ] def test_DMP___init__(): f = DMP([[ZZ(0)], [], [ZZ(0), ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert f._rep == [[1, 2], [3]] assert f.dom == ZZ assert f.lev == 1 f = DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ, 1) assert f._rep == [[1, 2], [3]] assert f.dom == ZZ assert f.lev == 1 f = DMP.from_dict({(1, 1): ZZ(1), (0, 0): ZZ(2)}, 1, ZZ) assert f._rep == [[1, 0], [2]] assert f.dom == ZZ assert f.lev == 1 def test_DMP_rep_deprecation(): f = DMP([1, 2, 3], ZZ) with warns_deprecated_sympy(): assert f.rep == [1, 2, 3] def test_DMP___eq__(): assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) assert DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[[ZZ(1)]]], ZZ) != DMP([[ZZ(1)]], ZZ) assert DMP([[ZZ(1)]], ZZ) != DMP([[[ZZ(1)]]], ZZ) def test_DMP___bool__(): assert bool(DMP([[]], ZZ)) is False assert bool(DMP([[ZZ(1)]], ZZ)) is True def test_DMP_to_dict(): f = DMP([[ZZ(3)], [], [ZZ(2)], [], [ZZ(8)]], ZZ) assert f.to_dict() == \ {(4, 0): 3, (2, 0): 2, (0, 0): 8} assert f.to_sympy_dict() == \ {(4, 0): ZZ.to_sympy(3), (2, 0): ZZ.to_sympy(2), (0, 0): ZZ.to_sympy(8)} def test_DMP_properties(): assert DMP([[]], ZZ).is_zero is True assert DMP([[ZZ(1)]], ZZ).is_zero is False assert DMP([[ZZ(1)]], ZZ).is_one is True assert DMP([[ZZ(2)]], ZZ).is_one is False assert DMP([[ZZ(1)]], ZZ).is_ground is True assert DMP([[ZZ(1)], [ZZ(2)], [ZZ(1)]], ZZ).is_ground is False assert DMP([[ZZ(1)], [ZZ(2), ZZ(0)], [ZZ(1), ZZ(0)]], ZZ).is_sqf is True assert DMP([[ZZ(1)], [ZZ(2), ZZ(0)], [ZZ(1), ZZ(0), ZZ(0)]], ZZ).is_sqf is False assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ).is_monic is True assert DMP([[ZZ(2), ZZ(2)], [ZZ(3)]], ZZ).is_monic is False assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ).is_primitive is True assert DMP([[ZZ(2), ZZ(4)], [ZZ(6)]], ZZ).is_primitive is False def test_DMP_arithmetics(): f = DMP([[ZZ(2)], [ZZ(2), ZZ(0)]], ZZ) assert f.mul_ground(2) == DMP([[ZZ(4)], [ZZ(4), ZZ(0)]], ZZ) assert f.quo_ground(2) == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) raises(ExactQuotientFailed, lambda: f.exquo_ground(3)) f = DMP([[ZZ(-5)]], ZZ) g = DMP([[ZZ(5)]], ZZ) assert f.abs() == g assert abs(f) == g assert g.neg() == f assert -g == f h = DMP([[]], ZZ) assert f.add(g) == h assert f + g == h assert g + f == h assert f + 5 == h assert 5 + f == h h = DMP([[ZZ(-10)]], ZZ) assert f.sub(g) == h assert f - g == h assert g - f == -h assert f - 5 == h assert 5 - f == -h h = DMP([[ZZ(-25)]], ZZ) assert f.mul(g) == h assert f * g == h assert g * f == h assert f * 5 == h assert 5 * f == h h = DMP([[ZZ(25)]], ZZ) assert f.sqr() == h assert f.pow(2) == h assert f**2 == h raises(TypeError, lambda: f.pow('x')) f = DMP([[ZZ(1)], [], [ZZ(1), ZZ(0), ZZ(0)]], ZZ) g = DMP([[ZZ(2)], [ZZ(-2), ZZ(0)]], ZZ) q = DMP([[ZZ(2)], [ZZ(2), ZZ(0)]], ZZ) r = DMP([[ZZ(8), ZZ(0), ZZ(0)]], ZZ) assert f.pdiv(g) == (q, r) assert f.pquo(g) == q assert f.prem(g) == r raises(ExactQuotientFailed, lambda: f.pexquo(g)) f = DMP([[ZZ(1)], [], [ZZ(1), ZZ(0), ZZ(0)]], ZZ) g = DMP([[ZZ(1)], [ZZ(-1), ZZ(0)]], ZZ) q = DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) r = DMP([[ZZ(2), ZZ(0), ZZ(0)]], ZZ) assert f.div(g) == (q, r) assert f.quo(g) == q assert f.rem(g) == r assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r raises(ExactQuotientFailed, lambda: f.exquo(g)) f = DMP([ZZ(1), ZZ(0), ZZ(-1)], ZZ) g = DMP([ZZ(2), ZZ(-2)], ZZ) q = DMP([], ZZ) r = f pq = DMP([ZZ(2), ZZ(2)], ZZ) pr = DMP([], ZZ) assert f.div(g) == (q, r) assert f.quo(g) == q assert f.rem(g) == r assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r raises(ExactQuotientFailed, lambda: f.exquo(g)) assert f.pdiv(g) == (pq, pr) assert f.pquo(g) == pq assert f.prem(g) == pr assert f.pexquo(g) == pq def test_DMP_functionality(): f = DMP([[ZZ(1)], [ZZ(2), ZZ(0)], [ZZ(1), ZZ(0), ZZ(0)]], ZZ) g = DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) h = DMP([[ZZ(1)]], ZZ) assert f.degree() == 2 assert f.degree_list() == (2, 2) assert f.total_degree() == 2 assert f.LC() == ZZ(1) assert f.TC() == ZZ(0) assert f.nth(1, 1) == ZZ(2) raises(TypeError, lambda: f.nth(0, 'x')) assert f.max_norm() == 2 assert f.l1_norm() == 4 u = DMP([[ZZ(2)], [ZZ(2), ZZ(0)]], ZZ) assert f.diff(m=1, j=0) == u assert f.diff(m=1, j=1) == u raises(TypeError, lambda: f.diff(m='x', j=0)) u = DMP([ZZ(1), ZZ(2), ZZ(1)], ZZ) v = DMP([ZZ(1), ZZ(2), ZZ(1)], ZZ) assert f.eval(a=1, j=0) == u assert f.eval(a=1, j=1) == v assert f.eval(1).eval(1) == ZZ(4) assert f.cofactors(g) == (g, g, h) assert f.gcd(g) == g assert f.lcm(g) == f u = DMP([[QQ(45), QQ(30), QQ(5)]], QQ) v = DMP([[QQ(1), QQ(2, 3), QQ(1, 9)]], QQ) assert u.monic() == v assert (4*f).content() == ZZ(4) assert (4*f).primitive() == (ZZ(4), f) f = DMP([QQ(1,3), QQ(1)], QQ) g = DMP([QQ(1,7), QQ(1)], QQ) assert f.cancel(g) == f.cancel(g, include=True) == ( DMP([QQ(7), QQ(21)], QQ), DMP([QQ(3), QQ(21)], QQ) ) assert f.cancel(g, include=False) == ( QQ(7), QQ(3), DMP([QQ(1), QQ(3)], QQ), DMP([QQ(1), QQ(7)], QQ) ) f = DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)], [ZZ(4)], [ZZ(5)], [ZZ(6)]], ZZ) assert f.trunc(3) == DMP([[ZZ(1)], [ZZ(-1)], [], [ZZ(1)], [ZZ(-1)], []], ZZ) f = DMP(f_4, ZZ) assert f.sqf_part() == -f assert f.sqf_list() == (ZZ(-1), [(-f, 1)]) f = DMP([[ZZ(-1)], [], [], [ZZ(5)]], ZZ) g = DMP([[ZZ(3), ZZ(1)], [], []], ZZ) h = DMP([[ZZ(45), ZZ(30), ZZ(5)]], ZZ) r = DMP([ZZ(675), ZZ(675), ZZ(225), ZZ(25)], ZZ) assert f.subresultants(g) == [f, g, h] assert f.resultant(g) == r f = DMP([ZZ(1), ZZ(3), ZZ(9), ZZ(-13)], ZZ) assert f.discriminant() == -11664 f = DMP([QQ(2), QQ(0)], QQ) g = DMP([QQ(1), QQ(0), QQ(-16)], QQ) s = DMP([QQ(1, 32), QQ(0)], QQ) t = DMP([QQ(-1, 16)], QQ) h = DMP([QQ(1)], QQ) assert f.half_gcdex(g) == (s, h) assert f.gcdex(g) == (s, t, h) assert f.invert(g) == s f = DMP([[QQ(1)], [QQ(2)], [QQ(3)]], QQ) raises(ValueError, lambda: f.half_gcdex(f)) raises(ValueError, lambda: f.gcdex(f)) raises(ValueError, lambda: f.invert(f)) f = DMP(ZZ.map([1, 0, 20, 0, 150, 0, 500, 0, 625, -2, 0, -10, 9]), ZZ) g = DMP([ZZ(1), ZZ(0), ZZ(0), ZZ(-2), ZZ(9)], ZZ) h = DMP([ZZ(1), ZZ(0), ZZ(5), ZZ(0)], ZZ) assert g.compose(h) == f assert f.decompose() == [g, h] f = DMP([[QQ(1)], [QQ(2)], [QQ(3)]], QQ) raises(ValueError, lambda: f.decompose()) raises(ValueError, lambda: f.sturm()) def test_DMP_exclude(): f = [[[[[[[[[[[[[[[[[[[[[[[[[[ZZ(1)]], [[]]]]]]]]]]]]]]]]]]]]]]]]]] J = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25] assert DMP(f, ZZ).exclude() == (J, DMP([ZZ(1), ZZ(0)], ZZ)) assert DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ).exclude() ==\ ([], DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)) def test_DMF__init__(): f = DMF(([[0], [], [0, 1, 2], [3]], [[1, 2, 3]]), ZZ) assert f.num == [[1, 2], [3]] assert f.den == [[1, 2, 3]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1, 2], [3]], [[1, 2, 3]]), ZZ, 1) assert f.num == [[1, 2], [3]] assert f.den == [[1, 2, 3]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[-1], [-2]], [[3], [-4]]), ZZ) assert f.num == [[-1], [-2]] assert f.den == [[3], [-4]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1], [2]], [[-3], [4]]), ZZ) assert f.num == [[-1], [-2]] assert f.den == [[3], [-4]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1], [2]], [[-3], [4]]), ZZ) assert f.num == [[-1], [-2]] assert f.den == [[3], [-4]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[]], [[-3], [4]]), ZZ) assert f.num == [[]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF(17, ZZ, 1) assert f.num == [[17]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1], [2]]), ZZ) assert f.num == [[1], [2]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF([[0], [], [0, 1, 2], [3]], ZZ) assert f.num == [[1, 2], [3]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF({(1, 1): 1, (0, 0): 2}, ZZ, 1) assert f.num == [[1, 0], [2]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[QQ(1)], [QQ(2)]], [[-QQ(3)], [QQ(4)]]), QQ) assert f.num == [[-QQ(1)], [-QQ(2)]] assert f.den == [[QQ(3)], [-QQ(4)]] assert f.lev == 1 assert f.dom == QQ f = DMF(([[QQ(1, 5)], [QQ(2, 5)]], [[-QQ(3, 7)], [QQ(4, 7)]]), QQ) assert f.num == [[-QQ(7)], [-QQ(14)]] assert f.den == [[QQ(15)], [-QQ(20)]] assert f.lev == 1 assert f.dom == QQ raises(ValueError, lambda: DMF(([1], [[1]]), ZZ)) raises(ZeroDivisionError, lambda: DMF(([1], []), ZZ)) def test_DMF__bool__(): assert bool(DMF([[]], ZZ)) is False assert bool(DMF([[1]], ZZ)) is True def test_DMF_properties(): assert DMF([[]], ZZ).is_zero is True assert DMF([[]], ZZ).is_one is False assert DMF([[1]], ZZ).is_zero is False assert DMF([[1]], ZZ).is_one is True assert DMF(([[1]], [[2]]), ZZ).is_one is False def test_DMF_arithmetics(): f = DMF([[7], [-9]], ZZ) g = DMF([[-7], [9]], ZZ) assert f.neg() == -f == g f = DMF(([[1]], [[1], []]), ZZ) g = DMF(([[1]], [[1, 0]]), ZZ) h = DMF(([[1], [1, 0]], [[1, 0], []]), ZZ) assert f.add(g) == f + g == h assert g.add(f) == g + f == h h = DMF(([[-1], [1, 0]], [[1, 0], []]), ZZ) assert f.sub(g) == f - g == h h = DMF(([[1]], [[1, 0], []]), ZZ) assert f.mul(g) == f*g == h assert g.mul(f) == g*f == h h = DMF(([[1, 0]], [[1], []]), ZZ) assert f.quo(g) == f/g == h h = DMF(([[1]], [[1], [], [], []]), ZZ) assert f.pow(3) == f**3 == h h = DMF(([[1]], [[1, 0, 0, 0]]), ZZ) assert g.pow(3) == g**3 == h h = DMF(([[1, 0]], [[1]]), ZZ) assert g.pow(-1) == g**-1 == h def test_ANP___init__(): rep = [QQ(1), QQ(1)] mod = [QQ(1), QQ(0), QQ(1)] f = ANP(rep, mod, QQ) assert f.to_list() == [QQ(1), QQ(1)] assert f.mod_to_list() == [QQ(1), QQ(0), QQ(1)] assert f.dom == QQ rep = {1: QQ(1), 0: QQ(1)} mod = {2: QQ(1), 0: QQ(1)} f = ANP(rep, mod, QQ) assert f.to_list() == [QQ(1), QQ(1)] assert f.mod_to_list() == [QQ(1), QQ(0), QQ(1)] assert f.dom == QQ f = ANP(1, mod, QQ) assert f.to_list() == [QQ(1)] assert f.mod_to_list() == [QQ(1), QQ(0), QQ(1)] assert f.dom == QQ f = ANP([1, 0.5], mod, QQ) assert all(QQ.of_type(a) for a in f.to_list()) raises(CoercionFailed, lambda: ANP([sqrt(2)], mod, QQ)) def test_ANP___eq__(): a = ANP([QQ(1), QQ(1)], [QQ(1), QQ(0), QQ(1)], QQ) b = ANP([QQ(1), QQ(1)], [QQ(1), QQ(0), QQ(2)], QQ) assert (a == a) is True assert (a != a) is False assert (a == b) is False assert (a != b) is True b = ANP([QQ(1), QQ(2)], [QQ(1), QQ(0), QQ(1)], QQ) assert (a == b) is False assert (a != b) is True def test_ANP___bool__(): assert bool(ANP([], [QQ(1), QQ(0), QQ(1)], QQ)) is False assert bool(ANP([QQ(1)], [QQ(1), QQ(0), QQ(1)], QQ)) is True def test_ANP_properties(): mod = [QQ(1), QQ(0), QQ(1)] assert ANP([QQ(0)], mod, QQ).is_zero is True assert ANP([QQ(1)], mod, QQ).is_zero is False assert ANP([QQ(1)], mod, QQ).is_one is True assert ANP([QQ(2)], mod, QQ).is_one is False def test_ANP_arithmetics(): mod = [QQ(1), QQ(0), QQ(0), QQ(-2)] a = ANP([QQ(2), QQ(-1), QQ(1)], mod, QQ) b = ANP([QQ(1), QQ(2)], mod, QQ) c = ANP([QQ(-2), QQ(1), QQ(-1)], mod, QQ) assert a.neg() == -a == c c = ANP([QQ(2), QQ(0), QQ(3)], mod, QQ) assert a.add(b) == a + b == c assert b.add(a) == b + a == c c = ANP([QQ(2), QQ(-2), QQ(-1)], mod, QQ) assert a.sub(b) == a - b == c c = ANP([QQ(-2), QQ(2), QQ(1)], mod, QQ) assert b.sub(a) == b - a == c c = ANP([QQ(3), QQ(-1), QQ(6)], mod, QQ) assert a.mul(b) == a*b == c assert b.mul(a) == b*a == c c = ANP([QQ(-1, 43), QQ(9, 43), QQ(5, 43)], mod, QQ) assert a.pow(0) == a**(0) == ANP(1, mod, QQ) assert a.pow(1) == a**(1) == a assert a.pow(-1) == a**(-1) == c assert a.quo(a) == a.mul(a.pow(-1)) == a*a**(-1) == ANP(1, mod, QQ) c = ANP([], [1, 0, 0, -2], QQ) r1 = a.rem(b) (q, r2) = a.div(b) assert r1 == r2 == c == a % b raises(NotInvertible, lambda: a.div(c)) raises(NotInvertible, lambda: a.rem(c)) # Comparison with "hard-coded" value fails despite looking identical # from sympy import Rational # c = ANP([Rational(11, 10), Rational(-1, 5), Rational(-3, 5)], [1, 0, 0, -2], QQ) assert q == a/b # == c def test_ANP_unify(): mod_z = [ZZ(1), ZZ(0), ZZ(-2)] mod_q = [QQ(1), QQ(0), QQ(-2)] a = ANP([QQ(1)], mod_q, QQ) b = ANP([ZZ(1)], mod_z, ZZ) assert a.unify(b)[0] == QQ assert b.unify(a)[0] == QQ assert a.unify(a)[0] == QQ assert b.unify(b)[0] == ZZ assert a.unify_ANP(b)[-1] == QQ assert b.unify_ANP(a)[-1] == QQ assert a.unify_ANP(a)[-1] == QQ assert b.unify_ANP(b)[-1] == ZZ