"""Tests for functions for generating interesting polynomials. """ from sympy.core.add import Add from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.ntheory.generate import prime from sympy.polys.domains.integerring import ZZ from sympy.polys.polytools import Poly from sympy.utilities.iterables import permute_signs from sympy.testing.pytest import raises from sympy.polys.specialpolys import ( swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly, interpolating_poly, fateman_poly_F_1, dmp_fateman_poly_F_1, fateman_poly_F_2, dmp_fateman_poly_F_2, fateman_poly_F_3, dmp_fateman_poly_F_3, ) from sympy.abc import x, y, z def test_swinnerton_dyer_poly(): raises(ValueError, lambda: swinnerton_dyer_poly(0, x)) assert swinnerton_dyer_poly(1, x, polys=True) == Poly(x**2 - 2) assert swinnerton_dyer_poly(1, x) == x**2 - 2 assert swinnerton_dyer_poly(2, x) == x**4 - 10*x**2 + 1 assert swinnerton_dyer_poly( 3, x) == x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576 # we only need to check that the polys arg works but # we may as well test that the roots are correct p = [sqrt(prime(i)) for i in range(1, 5)] assert str([i.n(3) for i in swinnerton_dyer_poly(4, polys=True).all_roots()] ) == str(sorted([Add(*i).n(3) for i in permute_signs(p)])) def test_cyclotomic_poly(): raises(ValueError, lambda: cyclotomic_poly(0, x)) assert cyclotomic_poly(1, x, polys=True) == Poly(x - 1) assert cyclotomic_poly(1, x) == x - 1 assert cyclotomic_poly(2, x) == x + 1 assert cyclotomic_poly(3, x) == x**2 + x + 1 assert cyclotomic_poly(4, x) == x**2 + 1 assert cyclotomic_poly(5, x) == x**4 + x**3 + x**2 + x + 1 assert cyclotomic_poly(6, x) == x**2 - x + 1 def test_symmetric_poly(): raises(ValueError, lambda: symmetric_poly(-1, x, y, z)) raises(ValueError, lambda: symmetric_poly(5, x, y, z)) assert symmetric_poly(1, x, y, z, polys=True) == Poly(x + y + z) assert symmetric_poly(1, (x, y, z), polys=True) == Poly(x + y + z) assert symmetric_poly(0, x, y, z) == 1 assert symmetric_poly(1, x, y, z) == x + y + z assert symmetric_poly(2, x, y, z) == x*y + x*z + y*z assert symmetric_poly(3, x, y, z) == x*y*z def test_random_poly(): poly = random_poly(x, 10, -100, 100, polys=False) assert Poly(poly).degree() == 10 assert all(-100 <= coeff <= 100 for coeff in Poly(poly).coeffs()) is True poly = random_poly(x, 10, -100, 100, polys=True) assert poly.degree() == 10 assert all(-100 <= coeff <= 100 for coeff in poly.coeffs()) is True def test_interpolating_poly(): x0, x1, x2, x3, y0, y1, y2, y3 = symbols('x:4, y:4') assert interpolating_poly(0, x) == 0 assert interpolating_poly(1, x) == y0 assert interpolating_poly(2, x) == \ y0*(x - x1)/(x0 - x1) + y1*(x - x0)/(x1 - x0) assert interpolating_poly(3, x) == \ y0*(x - x1)*(x - x2)/((x0 - x1)*(x0 - x2)) + \ y1*(x - x0)*(x - x2)/((x1 - x0)*(x1 - x2)) + \ y2*(x - x0)*(x - x1)/((x2 - x0)*(x2 - x1)) assert interpolating_poly(4, x) == \ y0*(x - x1)*(x - x2)*(x - x3)/((x0 - x1)*(x0 - x2)*(x0 - x3)) + \ y1*(x - x0)*(x - x2)*(x - x3)/((x1 - x0)*(x1 - x2)*(x1 - x3)) + \ y2*(x - x0)*(x - x1)*(x - x3)/((x2 - x0)*(x2 - x1)*(x2 - x3)) + \ y3*(x - x0)*(x - x1)*(x - x2)/((x3 - x0)*(x3 - x1)*(x3 - x2)) raises(ValueError, lambda: interpolating_poly(2, x, (x, 2), (1, 3))) raises(ValueError, lambda: interpolating_poly(2, x, (x + y, 2), (1, 3))) raises(ValueError, lambda: interpolating_poly(2, x + y, (x, 2), (1, 3))) raises(ValueError, lambda: interpolating_poly(2, 3, (4, 5), (6, 7))) raises(ValueError, lambda: interpolating_poly(2, 3, (4, 5), (6, 7, 8))) assert interpolating_poly(0, x, (1, 2), (3, 4)) == 0 assert interpolating_poly(1, x, (1, 2), (3, 4)) == 3 assert interpolating_poly(2, x, (1, 2), (3, 4)) == x + 2 def test_fateman_poly_F_1(): f, g, h = fateman_poly_F_1(1) F, G, H = dmp_fateman_poly_F_1(1, ZZ) assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H] f, g, h = fateman_poly_F_1(3) F, G, H = dmp_fateman_poly_F_1(3, ZZ) assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H] def test_fateman_poly_F_2(): f, g, h = fateman_poly_F_2(1) F, G, H = dmp_fateman_poly_F_2(1, ZZ) assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H] f, g, h = fateman_poly_F_2(3) F, G, H = dmp_fateman_poly_F_2(3, ZZ) assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H] def test_fateman_poly_F_3(): f, g, h = fateman_poly_F_3(1) F, G, H = dmp_fateman_poly_F_3(1, ZZ) assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H] f, g, h = fateman_poly_F_3(3) F, G, H = dmp_fateman_poly_F_3(3, ZZ) assert [ t.rep.to_list() for t in [f, g, h] ] == [F, G, H]