from sympy.codegen import Assignment from sympy.codegen.ast import none from sympy.codegen.cfunctions import expm1, log1p from sympy.codegen.scipy_nodes import cosm1 from sympy.codegen.matrix_nodes import MatrixSolve from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational, Pow from sympy.core.numbers import pi from sympy.core.singleton import S from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt, Min, Max, cot, acsch, asec, coth, sec from sympy.logic import And, Or from sympy.matrices import SparseMatrix, MatrixSymbol, Identity from sympy.printing.pycode import ( MpmathPrinter, PythonCodePrinter, pycode, SymPyPrinter ) from sympy.printing.tensorflow import TensorflowPrinter from sympy.printing.numpy import NumPyPrinter, SciPyPrinter from sympy.testing.pytest import raises, skip from sympy.tensor import IndexedBase, Idx from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayDiagonal, ArrayContraction, ZeroArray, OneArray from sympy.external import import_module from sympy.functions.special.gamma_functions import loggamma x, y, z = symbols('x y z') p = IndexedBase("p") def test_PythonCodePrinter(): prntr = PythonCodePrinter() assert not prntr.module_imports assert prntr.doprint(x**y) == 'x**y' assert prntr.doprint(Mod(x, 2)) == 'x % 2' assert prntr.doprint(-Mod(x, y)) == '-(x % y)' assert prntr.doprint(Mod(-x, y)) == '(-x) % y' assert prntr.doprint(And(x, y)) == 'x and y' assert prntr.doprint(Or(x, y)) == 'x or y' assert prntr.doprint(1/(x+y)) == '1/(x + y)' assert not prntr.module_imports assert prntr.doprint(pi) == 'math.pi' assert prntr.module_imports == {'math': {'pi'}} assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)' assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)' assert prntr.module_imports == {'math': {'pi', 'sqrt'}} assert prntr.doprint(acos(x)) == 'math.acos(x)' assert prntr.doprint(cot(x)) == '(1/math.tan(x))' assert prntr.doprint(coth(x)) == '((math.exp(x) + math.exp(-x))/(math.exp(x) - math.exp(-x)))' assert prntr.doprint(asec(x)) == '(math.acos(1/x))' assert prntr.doprint(acsch(x)) == '(math.log(math.sqrt(1 + x**(-2)) + 1/x))' assert prntr.doprint(Assignment(x, 2)) == 'x = 2' assert prntr.doprint(Piecewise((1, Eq(x, 0)), (2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)' assert prntr.doprint(Piecewise((2, Le(x, 0)), (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\ ' (3) if (x > 0) else None)' assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))' assert prntr.doprint(p[0, 1]) == 'p[0, 1]' assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)' assert prntr.doprint((2,3)) == "(2, 3)" assert prntr.doprint([2,3]) == "[2, 3]" assert prntr.doprint(Min(x, y)) == "min(x, y)" assert prntr.doprint(Max(x, y)) == "max(x, y)" def test_PythonCodePrinter_standard(): prntr = PythonCodePrinter() assert prntr.standard == 'python3' raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'})) def test_MpmathPrinter(): p = MpmathPrinter() assert p.doprint(sign(x)) == 'mpmath.sign(x)' assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)' assert p.doprint(S.Exp1) == 'mpmath.e' assert p.doprint(S.Pi) == 'mpmath.pi' assert p.doprint(S.GoldenRatio) == 'mpmath.phi' assert p.doprint(S.EulerGamma) == 'mpmath.euler' assert p.doprint(S.NaN) == 'mpmath.nan' assert p.doprint(S.Infinity) == 'mpmath.inf' assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf' assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)' def test_NumPyPrinter(): from sympy.core.function import Lambda from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions.diagonal import (DiagMatrix, DiagonalMatrix, DiagonalOf) from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions.special import (OneMatrix, ZeroMatrix) from sympy.abc import a, b p = NumPyPrinter() assert p.doprint(sign(x)) == 'numpy.sign(x)' A = MatrixSymbol("A", 2, 2) B = MatrixSymbol("B", 2, 2) C = MatrixSymbol("C", 1, 5) D = MatrixSymbol("D", 3, 4) assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)" assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)" assert p.doprint(Identity(3)) == "numpy.eye(3)" u = MatrixSymbol('x', 2, 1) v = MatrixSymbol('y', 2, 1) assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)' assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y' assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))" assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))" assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \ "numpy.fromfunction(lambda a, b: a + b, (4, 5))" assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)" assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)" assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))" assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))" assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)" assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))" # Workaround for numpy negative integer power errors assert p.doprint(x**-1) == 'x**(-1.0)' assert p.doprint(x**-2) == 'x**(-2.0)' expr = Pow(2, -1, evaluate=False) assert p.doprint(expr) == "2**(-1.0)" assert p.doprint(S.Exp1) == 'numpy.e' assert p.doprint(S.Pi) == 'numpy.pi' assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma' assert p.doprint(S.NaN) == 'numpy.nan' assert p.doprint(S.Infinity) == 'numpy.inf' assert p.doprint(S.NegativeInfinity) == '-numpy.inf' # Function rewriting operator precedence fix assert p.doprint(sec(x)**2) == '(numpy.cos(x)**(-1.0))**2' def test_issue_18770(): numpy = import_module('numpy') if not numpy: skip("numpy not installed.") from sympy.functions.elementary.miscellaneous import (Max, Min) from sympy.utilities.lambdify import lambdify expr1 = Min(0.1*x + 3, x + 1, 0.5*x + 1) func = lambdify(x, expr1, "numpy") assert (func(numpy.linspace(0, 3, 3)) == [1.0, 1.75, 2.5 ]).all() assert func(4) == 3 expr1 = Max(x**2, x**3) func = lambdify(x,expr1, "numpy") assert (func(numpy.linspace(-1, 2, 4)) == [1, 0, 1, 8] ).all() assert func(4) == 64 def test_SciPyPrinter(): p = SciPyPrinter() expr = acos(x) assert 'numpy' not in p.module_imports assert p.doprint(expr) == 'numpy.arccos(x)' assert 'numpy' in p.module_imports assert not any(m.startswith('scipy') for m in p.module_imports) smat = SparseMatrix(2, 5, {(0, 1): 3}) assert p.doprint(smat) == \ 'scipy.sparse.coo_matrix(([3], ([0], [1])), shape=(2, 5))' assert 'scipy.sparse' in p.module_imports assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio' assert p.doprint(S.Pi) == 'scipy.constants.pi' assert p.doprint(S.Exp1) == 'numpy.e' def test_pycode_reserved_words(): s1, s2 = symbols('if else') raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True)) py_str = pycode(s1 + s2) assert py_str in ('else_ + if_', 'if_ + else_') def test_issue_20762(): # Make sure pycode removes curly braces from subscripted variables a_b, b, a_11 = symbols('a_{b} b a_{11}') expr = a_b*b assert pycode(expr) == 'a_b*b' expr = a_11*b assert pycode(expr) == 'a_11*b' def test_sqrt(): prntr = PythonCodePrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)' assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)' prntr = PythonCodePrinter({'standard' : 'python3'}) assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)' prntr = MpmathPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == \ "x**(mpmath.mpf(1)/mpmath.mpf(2))" prntr = NumPyPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' prntr = SciPyPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' prntr = SymPyPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' def test_frac(): from sympy.functions.elementary.integers import frac expr = frac(x) prntr = NumPyPrinter() assert prntr.doprint(expr) == 'numpy.mod(x, 1)' prntr = SciPyPrinter() assert prntr.doprint(expr) == 'numpy.mod(x, 1)' prntr = PythonCodePrinter() assert prntr.doprint(expr) == 'x % 1' prntr = MpmathPrinter() assert prntr.doprint(expr) == 'mpmath.frac(x)' prntr = SymPyPrinter() assert prntr.doprint(expr) == 'sympy.functions.elementary.integers.frac(x)' class CustomPrintedObject(Expr): def _numpycode(self, printer): return 'numpy' def _mpmathcode(self, printer): return 'mpmath' def test_printmethod(): obj = CustomPrintedObject() assert NumPyPrinter().doprint(obj) == 'numpy' assert MpmathPrinter().doprint(obj) == 'mpmath' def test_codegen_ast_nodes(): assert pycode(none) == 'None' def test_issue_14283(): prntr = PythonCodePrinter() assert prntr.doprint(zoo) == "math.nan" assert prntr.doprint(-oo) == "float('-inf')" def test_NumPyPrinter_print_seq(): n = NumPyPrinter() assert n._print_seq(range(2)) == '(0, 1,)' def test_issue_16535_16536(): from sympy.functions.special.gamma_functions import (lowergamma, uppergamma) a = symbols('a') expr1 = lowergamma(a, x) expr2 = uppergamma(a, x) prntr = SciPyPrinter() assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)' assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)' p_numpy = NumPyPrinter() p_pycode = PythonCodePrinter({'strict': False}) for expr in [expr1, expr2]: with raises(NotImplementedError): p_numpy.doprint(expr1) assert "Not supported" in p_pycode.doprint(expr) def test_Integral(): from sympy.functions.elementary.exponential import exp from sympy.integrals.integrals import Integral single = Integral(exp(-x), (x, 0, oo)) double = Integral(x**2*exp(x*y), (x, -z, z), (y, 0, z)) indefinite = Integral(x**2, x) evaluateat = Integral(x**2, (x, 1)) prntr = SciPyPrinter() assert prntr.doprint(single) == 'scipy.integrate.quad(lambda x: numpy.exp(-x), 0, numpy.inf)[0]' assert prntr.doprint(double) == 'scipy.integrate.nquad(lambda x, y: x**2*numpy.exp(x*y), ((-z, z), (0, z)))[0]' raises(NotImplementedError, lambda: prntr.doprint(indefinite)) raises(NotImplementedError, lambda: prntr.doprint(evaluateat)) prntr = MpmathPrinter() assert prntr.doprint(single) == 'mpmath.quad(lambda x: mpmath.exp(-x), (0, mpmath.inf))' assert prntr.doprint(double) == 'mpmath.quad(lambda x, y: x**2*mpmath.exp(x*y), (-z, z), (0, z))' raises(NotImplementedError, lambda: prntr.doprint(indefinite)) raises(NotImplementedError, lambda: prntr.doprint(evaluateat)) def test_fresnel_integrals(): from sympy.functions.special.error_functions import (fresnelc, fresnels) expr1 = fresnelc(x) expr2 = fresnels(x) prntr = SciPyPrinter() assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]' assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]' p_numpy = NumPyPrinter() p_pycode = PythonCodePrinter() p_mpmath = MpmathPrinter() for expr in [expr1, expr2]: with raises(NotImplementedError): p_numpy.doprint(expr) with raises(NotImplementedError): p_pycode.doprint(expr) assert p_mpmath.doprint(expr1) == 'mpmath.fresnelc(x)' assert p_mpmath.doprint(expr2) == 'mpmath.fresnels(x)' def test_beta(): from sympy.functions.special.beta_functions import beta expr = beta(x, y) prntr = SciPyPrinter() assert prntr.doprint(expr) == 'scipy.special.beta(x, y)' prntr = NumPyPrinter() assert prntr.doprint(expr) == '(math.gamma(x)*math.gamma(y)/math.gamma(x + y))' prntr = PythonCodePrinter() assert prntr.doprint(expr) == '(math.gamma(x)*math.gamma(y)/math.gamma(x + y))' prntr = PythonCodePrinter({'allow_unknown_functions': True}) assert prntr.doprint(expr) == '(math.gamma(x)*math.gamma(y)/math.gamma(x + y))' prntr = MpmathPrinter() assert prntr.doprint(expr) == 'mpmath.beta(x, y)' def test_airy(): from sympy.functions.special.bessel import (airyai, airybi) expr1 = airyai(x) expr2 = airybi(x) prntr = SciPyPrinter() assert prntr.doprint(expr1) == 'scipy.special.airy(x)[0]' assert prntr.doprint(expr2) == 'scipy.special.airy(x)[2]' prntr = NumPyPrinter({'strict': False}) assert "Not supported" in prntr.doprint(expr1) assert "Not supported" in prntr.doprint(expr2) prntr = PythonCodePrinter({'strict': False}) assert "Not supported" in prntr.doprint(expr1) assert "Not supported" in prntr.doprint(expr2) def test_airy_prime(): from sympy.functions.special.bessel import (airyaiprime, airybiprime) expr1 = airyaiprime(x) expr2 = airybiprime(x) prntr = SciPyPrinter() assert prntr.doprint(expr1) == 'scipy.special.airy(x)[1]' assert prntr.doprint(expr2) == 'scipy.special.airy(x)[3]' prntr = NumPyPrinter({'strict': False}) assert "Not supported" in prntr.doprint(expr1) assert "Not supported" in prntr.doprint(expr2) prntr = PythonCodePrinter({'strict': False}) assert "Not supported" in prntr.doprint(expr1) assert "Not supported" in prntr.doprint(expr2) def test_numerical_accuracy_functions(): prntr = SciPyPrinter() assert prntr.doprint(expm1(x)) == 'numpy.expm1(x)' assert prntr.doprint(log1p(x)) == 'numpy.log1p(x)' assert prntr.doprint(cosm1(x)) == 'scipy.special.cosm1(x)' def test_array_printer(): A = ArraySymbol('A', (4,4,6,6,6)) I = IndexedBase('I') i,j,k = Idx('i', (0,1)), Idx('j', (2,3)), Idx('k', (4,5)) prntr = NumPyPrinter() assert prntr.doprint(ZeroArray(5)) == 'numpy.zeros((5,))' assert prntr.doprint(OneArray(5)) == 'numpy.ones((5,))' assert prntr.doprint(ArrayContraction(A, [2,3])) == 'numpy.einsum("abccd->abd", A)' assert prntr.doprint(I) == 'I' assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'numpy.einsum("abccc->abc", A)' assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'numpy.einsum("aabbc->cab", A)' assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'numpy.einsum("abcde->abe", A)' assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I' prntr = TensorflowPrinter() assert prntr.doprint(ZeroArray(5)) == 'tensorflow.zeros((5,))' assert prntr.doprint(OneArray(5)) == 'tensorflow.ones((5,))' assert prntr.doprint(ArrayContraction(A, [2,3])) == 'tensorflow.linalg.einsum("abccd->abd", A)' assert prntr.doprint(I) == 'I' assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'tensorflow.linalg.einsum("abccc->abc", A)' assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'tensorflow.linalg.einsum("aabbc->cab", A)' assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'tensorflow.linalg.einsum("abcde->abe", A)' assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I'