from sympy.core.function import nfloat from sympy.core.numbers import (Float, I, Rational, pi) from sympy.core.relational import Eq from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import sin from sympy.integrals.integrals import Integral from sympy.matrices.dense import Matrix from mpmath import mnorm, mpf from sympy.solvers import nsolve from sympy.utilities.lambdify import lambdify from sympy.testing.pytest import raises, XFAIL from sympy.utilities.decorator import conserve_mpmath_dps @XFAIL def test_nsolve_fail(): x = symbols('x') # Sometimes it is better to use the numerator (issue 4829) # but sometimes it is not (issue 11768) so leave this to # the discretion of the user ans = nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0) assert ans > 0.46 and ans < 0.47 def test_nsolve_denominator(): x = symbols('x') # Test that nsolve uses the full expression (numerator and denominator). ans = nsolve((x**2 + 3*x + 2)/(x + 2), -2.1) # The root -2 was divided out, so make sure we don't find it. assert ans == -1.0 def test_nsolve(): # onedimensional x = Symbol('x') assert nsolve(sin(x), 2) - pi.evalf() < 1e-15 assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10) # Testing checks on number of inputs raises(TypeError, lambda: nsolve(Eq(2*x, 2))) raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2)) # multidimensional x1 = Symbol('x1') x2 = Symbol('x2') f1 = 3 * x1**2 - 2 * x2**2 - 1 f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 f = Matrix((f1, f2)).T F = lambdify((x1, x2), f.T, modules='mpmath') for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]: x = nsolve(f, (x1, x2), x0, tol=1.e-8) assert mnorm(F(*x), 1) <= 1.e-10 # The Chinese mathematician Zhu Shijie was the very first to solve this # nonlinear system 700 years ago (z was added to make it 3-dimensional) x = Symbol('x') y = Symbol('y') z = Symbol('z') f1 = -x + 2*y f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4) f3 = sqrt(x**2 + y**2)*z f = Matrix((f1, f2, f3)).T F = lambdify((x, y, z), f.T, modules='mpmath') def getroot(x0): root = nsolve(f, (x, y, z), x0) assert mnorm(F(*root), 1) <= 1.e-8 return root assert list(map(round, getroot((1, 1, 1)))) == [2, 1, 0] assert nsolve([Eq( f1, 0), Eq(f2, 0), Eq(f3, 0)], [x, y, z], (1, 1, 1)) # just see that it works a = Symbol('a') assert abs(nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3) - mpf('0.31883011387318591')) < 1e-15 def test_issue_6408(): x = Symbol('x') assert nsolve(Piecewise((x, x < 1), (x**2, True)), x, 2) == 0 def test_issue_6408_integral(): x, y = symbols('x y') assert nsolve(Integral(x*y, (x, 0, 5)), y, 2) == 0 @conserve_mpmath_dps def test_increased_dps(): # Issue 8564 import mpmath mpmath.mp.dps = 128 x = Symbol('x') e1 = x**2 - pi q = nsolve(e1, x, 3.0) assert abs(sqrt(pi).evalf(128) - q) < 1e-128 def test_nsolve_precision(): x, y = symbols('x y') sol = nsolve(x**2 - pi, x, 3, prec=128) assert abs(sqrt(pi).evalf(128) - sol) < 1e-128 assert isinstance(sol, Float) sols = nsolve((y**2 - x, x**2 - pi), (x, y), (3, 3), prec=128) assert isinstance(sols, Matrix) assert sols.shape == (2, 1) assert abs(sqrt(pi).evalf(128) - sols[0]) < 1e-128 assert abs(sqrt(sqrt(pi)).evalf(128) - sols[1]) < 1e-128 assert all(isinstance(i, Float) for i in sols) def test_nsolve_complex(): x, y = symbols('x y') assert nsolve(x**2 + 2, 1j) == sqrt(2.)*I assert nsolve(x**2 + 2, I) == sqrt(2.)*I assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I]) assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I]) def test_nsolve_dict_kwarg(): x, y = symbols('x y') # one variable assert nsolve(x**2 - 2, 1, dict = True) == \ [{x: sqrt(2.)}] # one variable with complex solution assert nsolve(x**2 + 2, I, dict = True) == \ [{x: sqrt(2.)*I}] # two variables assert nsolve([x**2 + y**2 - 5, x**2 - y**2 + 1], [x, y], [1, 1], dict = True) == \ [{x: sqrt(2.), y: sqrt(3.)}] def test_nsolve_rational(): x = symbols('x') assert nsolve(x - Rational(1, 3), 0, prec=100) == Rational(1, 3).evalf(100) def test_issue_14950(): x = Matrix(symbols('t s')) x0 = Matrix([17, 23]) eqn = x + x0 assert nsolve(eqn, x, x0) == nfloat(-x0) assert nsolve(eqn.T, x.T, x0.T) == nfloat(-x0)