from __future__ import annotations from typing import TYPE_CHECKING from sympy.simplify import simplify as simp, trigsimp as tsimp # type: ignore from sympy.core.decorators import call_highest_priority, _sympifyit from sympy.core.assumptions import StdFactKB from sympy.core.function import diff as df from sympy.integrals.integrals import Integral from sympy.polys.polytools import factor as fctr from sympy.core import S, Add, Mul from sympy.core.expr import Expr if TYPE_CHECKING: from sympy.vector.vector import BaseVector class BasisDependent(Expr): """ Super class containing functionality common to vectors and dyadics. Named so because the representation of these quantities in sympy.vector is dependent on the basis they are expressed in. """ zero: BasisDependentZero @call_highest_priority('__radd__') def __add__(self, other): return self._add_func(self, other) @call_highest_priority('__add__') def __radd__(self, other): return self._add_func(other, self) @call_highest_priority('__rsub__') def __sub__(self, other): return self._add_func(self, -other) @call_highest_priority('__sub__') def __rsub__(self, other): return self._add_func(other, -self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return self._mul_func(self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return self._mul_func(other, self) def __neg__(self): return self._mul_func(S.NegativeOne, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self._div_helper(other) @call_highest_priority('__truediv__') def __rtruediv__(self, other): return TypeError("Invalid divisor for division") def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): """ Implements the SymPy evalf routine for this quantity. evalf's documentation ===================== """ options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict, 'quad':quad, 'verbose':verbose} vec = self.zero for k, v in self.components.items(): vec += v.evalf(n, **options) * k return vec evalf.__doc__ += Expr.evalf.__doc__ # type: ignore n = evalf def simplify(self, **kwargs): """ Implements the SymPy simplify routine for this quantity. simplify's documentation ======================== """ simp_components = [simp(v, **kwargs) * k for k, v in self.components.items()] return self._add_func(*simp_components) simplify.__doc__ += simp.__doc__ # type: ignore def trigsimp(self, **opts): """ Implements the SymPy trigsimp routine, for this quantity. trigsimp's documentation ======================== """ trig_components = [tsimp(v, **opts) * k for k, v in self.components.items()] return self._add_func(*trig_components) trigsimp.__doc__ += tsimp.__doc__ # type: ignore def _eval_simplify(self, **kwargs): return self.simplify(**kwargs) def _eval_trigsimp(self, **opts): return self.trigsimp(**opts) def _eval_derivative(self, wrt): return self.diff(wrt) def _eval_Integral(self, *symbols, **assumptions): integral_components = [Integral(v, *symbols, **assumptions) * k for k, v in self.components.items()] return self._add_func(*integral_components) def as_numer_denom(self): """ Returns the expression as a tuple wrt the following transformation - expression -> a/b -> a, b """ return self, S.One def factor(self, *args, **kwargs): """ Implements the SymPy factor routine, on the scalar parts of a basis-dependent expression. factor's documentation ======================== """ fctr_components = [fctr(v, *args, **kwargs) * k for k, v in self.components.items()] return self._add_func(*fctr_components) factor.__doc__ += fctr.__doc__ # type: ignore def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product.""" return (S.One, self) def as_coeff_add(self, *deps): """Efficiently extract the coefficient of a summation.""" l = [x * self.components[x] for x in self.components] return 0, tuple(l) def diff(self, *args, **kwargs): """ Implements the SymPy diff routine, for vectors. diff's documentation ======================== """ for x in args: if isinstance(x, BasisDependent): raise TypeError("Invalid arg for differentiation") diff_components = [df(v, *args, **kwargs) * k for k, v in self.components.items()] return self._add_func(*diff_components) diff.__doc__ += df.__doc__ # type: ignore def doit(self, **hints): """Calls .doit() on each term in the Dyadic""" doit_components = [self.components[x].doit(**hints) * x for x in self.components] return self._add_func(*doit_components) class BasisDependentAdd(BasisDependent, Add): """ Denotes sum of basis dependent quantities such that they cannot be expressed as base or Mul instances. """ def __new__(cls, *args, **options): components = {} # Check each arg and simultaneously learn the components for arg in args: if not isinstance(arg, cls._expr_type): if isinstance(arg, Mul): arg = cls._mul_func(*(arg.args)) elif isinstance(arg, Add): arg = cls._add_func(*(arg.args)) else: raise TypeError(str(arg) + " cannot be interpreted correctly") # If argument is zero, ignore if arg == cls.zero: continue # Else, update components accordingly if hasattr(arg, "components"): for x in arg.components: components[x] = components.get(x, 0) + arg.components[x] temp = list(components.keys()) for x in temp: if components[x] == 0: del components[x] # Handle case of zero vector if len(components) == 0: return cls.zero # Build object newargs = [x * components[x] for x in components] obj = super().__new__(cls, *newargs, **options) if isinstance(obj, Mul): return cls._mul_func(*obj.args) assumptions = {'commutative': True} obj._assumptions = StdFactKB(assumptions) obj._components = components obj._sys = (list(components.keys()))[0]._sys return obj class BasisDependentMul(BasisDependent, Mul): """ Denotes product of base- basis dependent quantity with a scalar. """ def __new__(cls, *args, **options): from sympy.vector import Cross, Dot, Curl, Gradient count = 0 measure_number = S.One zeroflag = False extra_args = [] # Determine the component and check arguments # Also keep a count to ensure two vectors aren't # being multiplied for arg in args: if isinstance(arg, cls._zero_func): count += 1 zeroflag = True elif arg == S.Zero: zeroflag = True elif isinstance(arg, (cls._base_func, cls._mul_func)): count += 1 expr = arg._base_instance measure_number *= arg._measure_number elif isinstance(arg, cls._add_func): count += 1 expr = arg elif isinstance(arg, (Cross, Dot, Curl, Gradient)): extra_args.append(arg) else: measure_number *= arg # Make sure incompatible types weren't multiplied if count > 1: raise ValueError("Invalid multiplication") elif count == 0: return Mul(*args, **options) # Handle zero vector case if zeroflag: return cls.zero # If one of the args was a VectorAdd, return an # appropriate VectorAdd instance if isinstance(expr, cls._add_func): newargs = [cls._mul_func(measure_number, x) for x in expr.args] return cls._add_func(*newargs) obj = super().__new__(cls, measure_number, expr._base_instance, *extra_args, **options) if isinstance(obj, Add): return cls._add_func(*obj.args) obj._base_instance = expr._base_instance obj._measure_number = measure_number assumptions = {'commutative': True} obj._assumptions = StdFactKB(assumptions) obj._components = {expr._base_instance: measure_number} obj._sys = expr._base_instance._sys return obj def _sympystr(self, printer): measure_str = printer._print(self._measure_number) if ('(' in measure_str or '-' in measure_str or '+' in measure_str): measure_str = '(' + measure_str + ')' return measure_str + '*' + printer._print(self._base_instance) class BasisDependentZero(BasisDependent): """ Class to denote a zero basis dependent instance. """ components: dict['BaseVector', Expr] = {} _latex_form: str def __new__(cls): obj = super().__new__(cls) # Pre-compute a specific hash value for the zero vector # Use the same one always obj._hash = (S.Zero, cls).__hash__() return obj def __hash__(self): return self._hash @call_highest_priority('__req__') def __eq__(self, other): return isinstance(other, self._zero_func) __req__ = __eq__ @call_highest_priority('__radd__') def __add__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for addition") @call_highest_priority('__add__') def __radd__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for addition") @call_highest_priority('__rsub__') def __sub__(self, other): if isinstance(other, self._expr_type): return -other else: raise TypeError("Invalid argument types for subtraction") @call_highest_priority('__sub__') def __rsub__(self, other): if isinstance(other, self._expr_type): return other else: raise TypeError("Invalid argument types for subtraction") def __neg__(self): return self def normalize(self): """ Returns the normalized version of this vector. """ return self def _sympystr(self, printer): return '0'