# mypy: allow-untyped-defs import collections import dataclasses import re import sys import types from typing import Counter, Dict, List, Optional import torch.nn from . import utils from .bytecode_transformation import ( create_call_function, create_call_method, create_dup_top, create_instruction, create_load_attr, create_load_global, create_load_method, create_rot_n, Instruction, ) from .exc import unimplemented from .source import AttrSource, Source from .utils import is_safe_constant, rot_n_helper from .variables.base import VariableTracker from .variables.nn_module import NNModuleVariable from .variables.tensor import ( NumpyNdarrayVariable, SymNodeVariable, TensorVariable, UnspecializedPythonVariable, ) from .variables.torch_function import TensorWithTFOverrideVariable @dataclasses.dataclass class GraphOutputEntry: index: int variable: VariableTracker class PyCodegen: """ Helper class uses for constructing Python bytecode """ def __init__( self, tx=None, root: Optional[torch.nn.Module] = None, graph_output_var: Optional[str] = None, tempvars=None, ): self.root = root self.top_of_stack: Optional[VariableTracker] = None self.uses: Counter[VariableTracker] = collections.Counter() self.graph_outputs: Dict[int, GraphOutputEntry] = {} self._output: List[Instruction] = [] self.tempvars = tempvars or {} self.tx = tx self.graph_output_var = graph_output_var self.code_options = self.tx.output.code_options self.cell_and_freevars = self.tx.cell_and_freevars self.new_var = self.tx.output.new_var self.mutable_side_effects_from_source = False self.value_from_source: bool = True def restore_stack(self, stack_values, *, value_from_source=True): prior = self.mutable_side_effects_from_source self.mutable_side_effects_from_source = True prev = self.value_from_source self.value_from_source &= value_from_source try: self.foreach(stack_values) finally: self.mutable_side_effects_from_source = prior self.value_from_source = prev def graph_output_vars(self): return [x.variable for x in self.graph_outputs.values()] def call_reconstruct(self, value): res = value.reconstruct(self) assert res is None, f"reconstruct!=None {value}" def __call__(self, value, allow_cache=True): """Generate code such that top-of-stack (TOS) is set to value""" if isinstance(value, Source): self.call_reconstruct(value) self.clear_tos() return assert isinstance(value, VariableTracker) output = self._output graph_outputs = self.graph_outputs if self.top_of_stack is value and allow_cache: output.append(create_dup_top()) return if self.mutable_side_effects_from_source: # this is needed to get aliasing relationships right # value.mutable_local.source will get mutated to hold `value` # mutable_side_effects_from_source=False is used to codegen the mutation # mutable_side_effects_from_source=True is used to codegen a reference from .side_effects import MutableSideEffects if isinstance(value.mutable_local, MutableSideEffects): self(value.mutable_local.source) return if allow_cache: if value.mutable_local and value.mutable_local in self.tempvars: output.append(self.create_load(self.tempvars[value.mutable_local])) self.top_of_stack = value return if self.tempvars.get(value) is not None: output.append(self.create_load(self.tempvars[value])) self.top_of_stack = value return if value.source is not None and allow_cache and self.value_from_source: self.call_reconstruct(value.source) elif value.is_python_constant() and is_safe_constant( value.as_python_constant() ): output.append(self.create_load_const(value.as_python_constant())) elif isinstance(value, TensorWithTFOverrideVariable): graph_outputs_key = self.add_graph_output(value) self.load_import_from(utils.__name__, "to_subclass") self.load_graph_output(graph_outputs[graph_outputs_key].index) output.append( self.create_load_global( value.global_mangled_class_name(self.tx), False, add=True ) ) output.extend(create_call_function(2, True)) elif ( isinstance(value, SymNodeVariable) and value.python_type() == float and not self.tx.export ): # This is a little unusual; force the output convention to be a # Tensor here. Don't do this for export because this is # apparently load bearing for export tests (but I am a bit # doubtful it actually works in the real world) # NB: It works to add_graph_output on a computed expression # as_tensor here, because we memoize as_tensor calls on # SymNodeVariable! graph_outputs_key = self.add_graph_output(value.as_tensor(self.tx)) self.load_graph_output(graph_outputs[graph_outputs_key].index) output.extend( [self.create_load_attr("item")] + create_call_function(0, True) ) elif isinstance( value, ( TensorVariable, SymNodeVariable, UnspecializedPythonVariable, NumpyNdarrayVariable, ), ): graph_outputs_key = self.add_graph_output(value) if isinstance(value, NumpyNdarrayVariable): self.load_import_from(utils.__name__, "to_numpy_helper") self.load_graph_output(graph_outputs[graph_outputs_key].index) if isinstance(value, NumpyNdarrayVariable): output.extend(create_call_function(1, True)) elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap: output.extend( [self.create_load_attr("item")] + create_call_function(0, True) ) elif isinstance(value, NNModuleVariable): parts = value.module_key.split(".") if parts[0] in self.code_options["co_varnames"]: output.append(self.create_load(parts[0])) parts = parts[1:] else: assert self.root is not None output.append(self.create_load_output(self.root)) for part in parts: output.append(self.create_load_attr(part)) else: self.uses[value] += 1 try: self.call_reconstruct(value) except NotImplementedError: unimplemented(f"reconstruct: {value}") if allow_cache and value in self.tempvars: self._output.append(create_dup_top()) self.add_cache(value) self.top_of_stack = value def add_graph_output(self, value): graph_outputs_key = id(value.as_proxy()) if graph_outputs_key not in self.graph_outputs: self.graph_outputs[graph_outputs_key] = GraphOutputEntry( len(self.graph_outputs), value ) return graph_outputs_key def load_graph_output(self, index): output = self._output output.append(self.create_load(self.graph_output_var)) output.append(self._create_load_const(index)) output.append(create_instruction("BINARY_SUBSCR")) def add_cache(self, value): var = self.new_var() self.tempvars[value] = var if value.mutable_local: self.tempvars[value.mutable_local] = var self._output.append(self.create_store(var)) def foreach(self, items): for i in items: self(i) def setup_globally_cached(self, name, value, push_null): """Store value in a new global""" name = re.sub(r"[^a-zA-Z0-9_]+", "_", name) f_globals = self.tx.f_globals if name in f_globals: assert id(f_globals[name]) == id(value) else: f_globals[name] = value return [self.create_load_global(name, push_null, add=True)] def clear_tos(self): self.top_of_stack = None def append_output(self, inst): assert isinstance(inst, Instruction) self._output.append(inst) self.clear_tos() def extend_output(self, insts): assert all(isinstance(x, Instruction) for x in insts) self._output.extend(insts) self.clear_tos() def get_instructions(self) -> List[Instruction]: return self._output def create_load(self, name) -> Instruction: if name in self.cell_and_freevars(): return create_instruction("LOAD_DEREF", argval=name) assert name in self.code_options["co_varnames"], f"{name} missing" return create_instruction("LOAD_FAST", argval=name) def create_load_closure(self, name) -> Instruction: assert name in self.cell_and_freevars() return create_instruction("LOAD_CLOSURE", argval=name) def create_store(self, name) -> Instruction: if name in self.cell_and_freevars(): return create_instruction("STORE_DEREF", argval=name) assert name in self.code_options["co_varnames"] return create_instruction("STORE_FAST", argval=name) def create_load_global(self, name, push_null, add=False) -> Instruction: if add: self.tx.output.update_co_names(name) assert name in self.code_options["co_names"], f"{name} not in co_names" return create_load_global(name, push_null) def create_load_const(self, value) -> Instruction: assert is_safe_constant(value), f"unsafe constant {value}" return self._create_load_const(value) def _create_load_const(self, value) -> Instruction: return create_instruction("LOAD_CONST", argval=value) create_load_output = _create_load_const def create_load_method(self, name): self.tx.output.update_co_names(name) return create_load_method(name) def load_method(self, name): self.append_output(self.create_load_method(name)) def call_method(self, nargs): self.extend_output(create_call_method(nargs)) def create_load_attr(self, name) -> Instruction: if name not in self.code_options["co_names"]: self.code_options["co_names"] += (name,) return create_load_attr(name) def load_attr(self, name): self.append_output(self.create_load_attr(name)) def create_load_attrs(self, names): return [self.create_load_attr(name) for name in names.split(".")] def create_store_attr(self, name) -> Instruction: if name not in self.code_options["co_names"]: self.code_options["co_names"] += (name,) return create_instruction("STORE_ATTR", argval=name) def store_attr(self, name): self.append_output(self.create_store_attr(name)) def load_function_name(self, fn_name, push_null, num_on_stack=0): """Load the global fn_name on the stack num_on_stack down""" output = [] if push_null and sys.version_info >= (3, 11): output.extend( [create_instruction("PUSH_NULL"), *self.rot_n(num_on_stack + 1)] ) output.extend( [ self.create_load_global(fn_name, False, add=True), *self.rot_n(num_on_stack + 1), ] ) return output def rot_n(self, n): try: return create_rot_n(n) except AttributeError: # desired rotate bytecode doesn't exist, generate equivalent bytecode return [ create_instruction("BUILD_TUPLE", arg=n), self._create_load_const(rot_n_helper(n)), *create_rot_n(2), create_instruction("CALL_FUNCTION_EX", arg=0), create_instruction("UNPACK_SEQUENCE", arg=n), ] def pop_null(self): # POP_TOP doesn't work for null, so we pop nulls by pushing in a # nop function, calling it (which consumes the null), and popping the result. assert sys.version_info >= (3, 11) return [ self._create_load_const(lambda: None), *create_call_function(0, False), create_instruction("POP_TOP"), ] def pop_top(self): self.append_output(create_instruction("POP_TOP")) def call_function(self, nargs: int, push_null: bool): self.extend_output(create_call_function(nargs, push_null=push_null)) def dup_top(self): self.append_output(create_dup_top()) def store(self, varname): self.append_output(self.create_store(varname)) def make_function_with_closure( self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0 ): freevars = code.co_freevars assert freevars output = self._output if sys.version_info >= (3, 11) and push_null: output.append(create_instruction("PUSH_NULL")) output.extend(self.rot_n(num_on_stack + 1)) for var in freevars: assert var in self.cell_and_freevars() output.append(create_instruction("LOAD_CLOSURE", argval=var)) output.append(create_instruction("BUILD_TUPLE", arg=len(freevars))) output.append(self.create_load_const(code)) if sys.version_info < (3, 11): output.append(self.create_load_const(fn_name)) output.append(create_instruction("MAKE_FUNCTION", arg=0x08)) output.extend(self.rot_n(num_on_stack + 1)) self.clear_tos() def create_load_python_module(self, mod, push_null) -> Instruction: """ Generate a LOAD_GLOBAL instruction to fetch a given python module. """ output = self.tx.output global_scope = output.global_scope name = re.sub(r"^.*[.]", "", mod.__name__) if global_scope.get(name, None) is mod: return self.create_load_global(name, push_null, add=True) prefix = f"___module_{name}" global_name = self.tx.output.install_global_by_id(prefix, mod) return self.create_load_global(global_name, push_null, add=True) def make_call_generated_code(self, fn_name: str) -> None: """Call the generated code function stored in fn_name""" self.extend_output(self.load_function_name(fn_name, True)) graphargs = self.tx.output.graphargs for arg in graphargs: if arg.pass_arg_as_tensor: self.extend_output( [ self.create_load_python_module(torch, True), self.create_load_attr("as_tensor"), ] ) self.call_reconstruct(arg) self.extend_output(create_call_function(1, False)) else: self.call_reconstruct(arg) self.extend_output(create_call_function(len(graphargs), False)) def load_import_from(self, module_name, object_name) -> None: self(AttrSource(self.tx.import_source(module_name), object_name)) def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]: if sys.version_info >= (3, 11): output = create_call_function(nargs, push_null) if sys.version_info >= (3, 12): idx = -1 expected_inst = "CALL" else: idx = -2 expected_inst = "PRECALL" assert output[idx].opname == expected_inst kw_names_inst = create_instruction("KW_NAMES", argval=kw_names) output.insert(idx, kw_names_inst) return output return [ self.create_load_const(kw_names), create_instruction("CALL_FUNCTION_KW", arg=nargs), ] def create_delete(self, value) -> Instruction: return create_instruction("DELETE_FAST", argval=value)