# mypy: allow-untyped-defs import contextlib import dis import functools import logging import os.path import random import re import sys import types import unittest from typing import List, Optional, Sequence, Union from unittest.mock import patch np: Optional[types.ModuleType] = None try: import numpy as np except ModuleNotFoundError: np = None import torch from torch import fx from torch._dynamo.output_graph import OutputGraph from . import config, eval_frame, optimize_assert, reset from .bytecode_transformation import ( create_instruction, debug_checks, is_generator, transform_code_object, ) from .guards import CheckFunctionManager, GuardedCode from .utils import same unsupported = eval_frame.unsupported three = 3 log = logging.getLogger(__name__) def clone_me(x): if x is None: return None return x.detach().clone().requires_grad_(x.requires_grad) def remove_optimized_module_prefix(name) -> str: return re.sub(r"^_orig_mod[.]", "", name) def collect_results(model, prediction, loss, example_inputs): results = [] results.append(prediction) results.append(loss) # if isinstance(loss, torch.Tensor) and loss.item() > 1: # log.warning( # f"High loss value alert - {loss:.2f}. Can result in unstable gradients." # ) grads = dict() params = dict() for name, param in model.named_parameters(): if isinstance(model, eval_frame.OptimizedModule): name = remove_optimized_module_prefix(name) param_copy = param grad = param.grad # Treat None and zero grad as same if param.grad is None: grad = torch.zeros_like(param) grads[name + ".grad"] = grad params[name] = param_copy results.append(grads) results.append(params) buffers = dict() for name, buffer in model.named_buffers(): if isinstance(model, eval_frame.OptimizedModule): name = remove_optimized_module_prefix(name) buffers[name] = buffer results.append(buffers) for example in example_inputs: if isinstance(example, (tuple, list)): for inp in example: if isinstance(inp, torch.Tensor): results.append(inp.grad) else: if isinstance(example, torch.Tensor): results.append(example.grad) return results def requires_bwd_pass(out): if isinstance(out, torch.Tensor): return out.requires_grad elif isinstance(out, (list, tuple)): return any(requires_bwd_pass(x) for x in out) elif out is None: return False elif isinstance(out, int): return False raise NotImplementedError("Don't know how to reduce", type(out)) def reduce_to_scalar_loss(out): """Reduce the output of a model to get scalar loss""" if isinstance(out, torch.Tensor): # Mean does not work on integer tensors return out.sum() / out.numel() elif isinstance(out, (list, tuple)): return sum(reduce_to_scalar_loss(x) for x in out) / len(out) elif type(out).__name__ in ( "MaskedLMOutput", "Seq2SeqLMOutput", "CausalLMOutputWithCrossAttentions", ): return reduce_to_scalar_loss(out.logits) elif type(out).__name__ == "SquashedNormal": return out.mean.sum() elif isinstance(out, dict): return sum(reduce_to_scalar_loss(value) for value in out.values()) / len( out.keys() ) raise NotImplementedError("Don't know how to reduce", type(out)) def debug_dir() -> str: path = os.path.join(os.path.dirname(__file__), "../debug") if not os.path.exists(path): os.mkdir(path) return path def debug_dump(name, code: types.CodeType, extra="") -> None: with open(os.path.join(debug_dir(), name), "w") as fd: fd.write( f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n" ) def debug_insert_nops( frame, cache_size, hooks, _, *, skip: int = 0 ) -> Optional[GuardedCode]: """used to debug jump updates""" def insert_nops(instructions, code_options): instructions.insert(0, create_instruction("NOP")) instructions.insert(0, create_instruction("NOP")) if is_generator(frame.f_code): return None debug_checks(frame.f_code) code = transform_code_object(frame.f_code, insert_nops) graph = OutputGraph( code_options={}, compiler_fn=None, root_tx=None, export=False, export_constraints=None, frame_state={"_id": 0}, # TODO: shouldn't this be f_locals/f_globals from frame? local_scope=locals(), global_scope=globals(), f_code=frame.f_code, ) return GuardedCode(code, CheckFunctionManager(graph).check_fn) class CompileCounter: def __init__(self): self.frame_count = 0 self.op_count = 0 def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]): self.frame_count += 1 for node in gm.graph.nodes: if "call" in node.op: self.op_count += 1 return gm.forward def clear(self): self.frame_count = 0 self.op_count = 0 class CompileCounterWithBackend: def __init__(self, backend): self.frame_count = 0 self.op_count = 0 self.backend = backend self.graphs = [] def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]): from .backends.registry import lookup_backend self.frame_count += 1 for node in gm.graph.nodes: if "call" in node.op: self.op_count += 1 self.graphs.append(gm) return lookup_backend(self.backend)(gm, example_inputs) # Equivalent to backend="eager", but also records graphs that # we can assert on class EagerAndRecordGraphs: def __init__(self): self.graphs = [] def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]): self.graphs.append(gm) return gm.forward def strip_comment(code) -> str: code = str(code) return re.sub(r"(?m)^ *#.*\n?", "", code) def remove_trailing_space(code) -> str: return "\n".join([line.rstrip() for line in code.split("\n")]) def normalize_gm(gm_str) -> str: # strip comments as comments have path to files which may differ from # system to system. return remove_trailing_space(strip_comment(gm_str)) def standard_test( self, fn, nargs, expected_ops=None, expected_ops_dynamic=None, expected_frame_count=1, ): if not config.assume_static_by_default and expected_ops_dynamic is not None: expected_ops = expected_ops_dynamic actual = CompileCounter() args1 = [torch.randn(10, 10) for _ in range(nargs)] args2 = [torch.randn(10, 10) for _ in range(nargs)] correct1 = fn(*args1) correct2 = fn(*args2) reset() opt_fn = optimize_assert(actual)(fn) val1a = opt_fn(*args1) val2a = opt_fn(*args2) val1b = opt_fn(*args1) val2b = opt_fn(*args2) reset() self.assertTrue(same(val1a, correct1)) self.assertTrue(same(val1b, correct1)) self.assertTrue(same(val2a, correct2)) self.assertTrue(same(val2b, correct2)) self.assertEqual(actual.frame_count, expected_frame_count) if expected_ops is not None: self.assertEqual(actual.op_count, expected_ops) def dummy_fx_compile(gm: fx.GraphModule, example_inputs): return gm.forward def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1): if not is_correct: return "ERROR" if pvalue > pvalue_threshold: return f"{speedup:.3f}x SAME" return f"{speedup:.3f}x p={pvalue:.2f}" def rand_strided( size: Sequence[int], stride: Sequence[int], dtype: torch.dtype = torch.float32, device: Union[str, torch.device] = "cpu", extra_size: int = 0, ): needed_size = ( sum((shape - 1) * stride for shape, stride in zip(size, stride)) + 1 + extra_size ) if dtype.is_floating_point: if dtype.itemsize == 1: """ normal distribution kernel is not implemented for fp8.. Workaround that by creating a fp16 tensor and then cast. """ buffer = torch.randn(needed_size, dtype=torch.float16, device=device).to( dtype=dtype ) else: buffer = torch.randn(needed_size, dtype=dtype, device=device) else: buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device) return torch.as_strided(buffer, size, stride) def _make_fn_with_patches(fn, *patches): @functools.wraps(fn) def _fn(*args, **kwargs): with contextlib.ExitStack() as stack: for module, attr, val in patches: stack.enter_context(patch.object(module, attr, val)) return fn(*args, **kwargs) return _fn def make_test_cls_with_patches( cls, cls_prefix, fn_suffix, *patches, xfail_prop=None, decorator=lambda x: x ): DummyTestClass = type(f"{cls_prefix}{cls.__name__}", cls.__bases__, {}) DummyTestClass.__qualname__ = DummyTestClass.__name__ for name in dir(cls): if name.startswith("test_"): fn = getattr(cls, name) if not callable(fn): setattr(DummyTestClass, name, getattr(cls, name)) continue new_name = f"{name}{fn_suffix}" new_fn = _make_fn_with_patches(fn, *patches) new_fn.__name__ = new_name if xfail_prop is not None and hasattr(fn, xfail_prop): new_fn = unittest.expectedFailure(new_fn) setattr(DummyTestClass, new_name, decorator(new_fn)) # NB: Doesn't handle slots correctly, but whatever elif not hasattr(DummyTestClass, name): setattr(DummyTestClass, name, getattr(cls, name)) return DummyTestClass # test Python 3.11+ specific features def skipIfNotPy311(fn): if sys.version_info >= (3, 11): return fn return unittest.skip(fn) def skipIfNotPy312(fn): if sys.version_info >= (3, 12): return fn return unittest.skip(fn) def xfailIfPy312(fn): if sys.version_info >= (3, 12): return unittest.expectedFailure(fn) return fn def skipIfPy312(fn): if sys.version_info >= (3, 12): return unittest.skip(fn) return fn # Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py # and test/dynamo/test_dynamic_shapes.py def expectedFailureDynamic(fn): fn._expected_failure_dynamic = True return fn # Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py def expectedFailureCodegenDynamic(fn): fn._expected_failure_codegen_dynamic = True return fn # Controls test generated in test/inductor/test_cpp_wrapper.py def expectedFailureDynamicWrapper(fn): fn._expected_failure_dynamic_wrapper = True return fn def reset_rng_state(use_xla=False): torch.manual_seed(1337) random.seed(1337) if np: np.random.seed(1337) if use_xla: import torch_xla.core.xla_model as xm xm.set_rng_state(1337, str(xm.xla_device()))