# mypy: allow-untyped-defs import dataclasses import inspect import sys from typing import Any, Callable, Dict, Iterable, Tuple import torch import torch._utils_internal as _utils_internal from torch import _C @dataclasses.dataclass class Kernel: """Models a (function, source location)""" func: Callable source: str def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) class RegistrationHandle: """Does something when someone calls .destroy() on it""" def __init__(self, on_destroy: Callable): self._on_destroy = on_destroy def destroy(self) -> None: self._on_destroy() def get_source(stacklevel: int) -> str: """Get a string that represents the caller. Example: "/path/to/foo.py:42" Use stacklevel=1 to get the caller's source Use stacklevel=2 to get the caller's caller's source etc. """ frame = inspect.getframeinfo(sys._getframe(stacklevel)) source = f"{frame.filename}:{frame.lineno}" return source def parse_namespace(qualname: str) -> Tuple[str, str]: splits = qualname.split("::") if len(splits) != 2: raise ValueError( f"Expected `qualname` to be of the form " f'"namespace::name", but got {qualname}. ' f"The qualname passed to the torch.library APIs must consist " f"of a namespace and a name, e.g. aten::sin" ) return splits[0], splits[1] def lookup_op(qualname: str) -> torch._ops.OpOverload: namespace, name = parse_namespace(qualname) if "." in name: name, overload = name.split(".") else: overload = "default" ns = getattr(torch.ops, namespace) packet = getattr(ns, name) return getattr(packet, overload) def is_builtin(op: torch._ops.OpOverload) -> bool: assert isinstance(op, torch._ops.OpOverload) return op.namespace in {"aten", "prim", "prims"} def is_functional_schema(schema: Any) -> bool: """Check if the schema is functional. An operator is functional if: - it does not mutate any of its inputs - it does not return a view on any of its inputs - it has at least one return """ def is_functional(schema): if schema.is_mutable: return False rets = schema.returns is_non_mutating_view = len(rets) > 0 and any( r.alias_info is not None and not r.alias_info.is_write for r in rets ) if is_non_mutating_view: return False if not schema.returns: return False return True if isinstance(schema, torch._C.FunctionSchema): return is_functional(schema) # Lazy import because not all PyTorch builds have torchgen from torchgen.model import FunctionSchema if isinstance(schema, str): schema = FunctionSchema.parse(schema) assert isinstance(schema, FunctionSchema) return is_functional(schema) # should be torch._C.JitType but that annotation is busted def is_tensorlist_like_type(typ: Any) -> bool: return ( typ == _C.ListType(_C.TensorType.get()) or typ == _C.ListType(_C.OptionalType(_C.TensorType.get())) or typ == _C.OptionalType(_C.ListType(_C.TensorType.get())) or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get()))) ) # should be torch._C.JitType but that annotation is busted def is_tensor_like_type(typ: Any) -> bool: return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get()) def mutates_and_returns_first_arg(op: torch._ops.OpOverload): """Check if an op is an inplace aten op, i.e. it mutates and returns the first arg. TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this, but not all PyTorch builds have torchgen (due to the yaml dependency being weird). Figure this out. Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a) """ if op.namespace != "aten": return False schema = op._schema if not len(schema.returns) == 1: return False if schema.returns[0].alias_info is None: return False alias_set = schema.returns[0].alias_info.after_set if len(alias_set) != 1: return False loc = next(iter(alias_set)) if len(schema.arguments) < 1: return False first_arg = schema.arguments[0] if first_arg.alias_info is None: return False if not first_arg.alias_info.is_write: return False alias_set = first_arg.alias_info.after_set if len(alias_set) != 1: return False if loc != next(iter(alias_set)): return False for arg in schema.arguments[1:]: if arg.alias_info is not None: return False return True def fill_defaults(schema, args, kwargs): new_args = [] new_kwargs = {} for i in range(len(schema.arguments)): info = schema.arguments[i] if info.kwarg_only: if info.name in kwargs: new_kwargs[info.name] = kwargs[info.name] else: new_kwargs[info.name] = info.default_value else: if i < len(args): new_args.append(args[i]) else: new_args.append(info.default_value) return tuple(new_args), new_kwargs def zip_schema( schema: _C.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any] ) -> Iterable[Tuple[_C.Argument, Any]]: """zips schema.arguments and (args, kwargs) together. Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload: that is, kwargs must be keyword-only arguments and default values may be omitted. """ assert len(schema.arguments) >= len(args) + len(kwargs) for i in range(len(schema.arguments)): info = schema.arguments[i] if info.kwarg_only: if info.name in kwargs: yield info, kwargs[info.name] continue if i >= len(args): # args that are equal to their default values are not populated # if they are followed by args that are equal to their defaults. # Skip these. continue yield info, args[i] return def can_generate_trivial_fake_impl(op: torch._ops.OpOverload) -> bool: assert isinstance(op, torch._ops.OpOverload) if is_builtin(op): # We control the built-ins. These may (in rare cases) # do input metadata mutation (which we have banned on custom ops) return False schema = op._schema # It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution if not schema.is_mutable: return False if len(schema.returns) > 0: return False # If the op returns nothing, then it has a trivial fake impl. return True def requires_set_python_module() -> bool: """If an op was defined in C++ and extended from Python using the torch.library APIs, returns if we require that there have been a m.set_python_module("mylib.ops") call from C++ that associates the C++ op with a python module. """ return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True) def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs): assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode) overload_types = [] args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values())) for a in args_flattened: # TODO: need to double check the semantics of the "types" argument to torch_dispatch. # It's generated in PyInterpreter.cpp, but seems to be generated in two places, # where in one case we only include tensors with the python key, and in another # we include **all** tensors. if isinstance(a, torch.Tensor) and torch._C._dispatch_keys(a).has( torch._C.DispatchKey.Python ): overload_types.append(type(a)) # TODO: check that I got these args correct (in C++, we pass in "0000"??) return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs) def has_kwarg_only_args(schema: _C.FunctionSchema): return any(a.kwarg_only for a in schema.arguments) def has_kwarg_only_tensors(schema: _C.FunctionSchema): for a in schema.arguments: if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)): continue if not a.kwarg_only: continue return True return False