# mypy: allow-untyped-defs import collections import dataclasses import io import operator import os import pickle import queue import threading import uuid import warnings from abc import ABC, abstractmethod from contextlib import contextmanager from dataclasses import dataclass from pathlib import Path from typing import ( Any, Callable, cast, Dict, Generator, IO, Iterable, Iterator, List, Optional, Tuple, Union, ) import torch from torch import Tensor from torch._utils import _get_available_device_type, _get_device_module from torch.distributed._shard._utils import narrow_tensor_by_index from torch.distributed.checkpoint.metadata import ( Metadata, MetadataIndex, STATE_DICT_TYPE, StorageMeta, ) from torch.distributed.checkpoint.planner import ( LoadItemType, LoadPlan, LoadPlanner, ReadItem, SavePlan, SavePlanner, WriteItem, WriteItemType, ) from torch.distributed.checkpoint.staging import BlockingAsyncStager from torch.distributed.checkpoint.storage import ( StorageReader, StorageWriter, WriteResult, ) from torch.distributed.checkpoint.utils import _create_file_view from torch.futures import Future __all__ = ["FileSystemWriter", "FileSystemReader", "FileSystem", "FileSystemBase"] _metadata_fn: str = ".metadata" @dataclass class _StorageInfo: """This is the per entry storage info.""" relative_path: str offset: int length: int @dataclass class _StoragePrefix: prefix: str DEFAULT_SUFFIX = ".distcp" def _generate_uuid() -> str: return str(uuid.uuid4()) class _TensorLoader(ABC): @abstractmethod def add(self, size: int, obj: object) -> None: pass @abstractmethod def start_loading(self) -> None: pass @abstractmethod def values(self) -> Iterator[Tuple[torch.Tensor, object]]: pass class _SerialCpuLoader(_TensorLoader): def __init__(self, resolve_fun: Callable) -> None: self.resolve_fun = resolve_fun self.items: List[Tuple[int, object]] = [] def add(self, size: int, obj: object) -> None: self.items.append((size, obj)) def start_loading(self) -> None: pass def values(self) -> Iterator[Tuple[torch.Tensor, object]]: for _, obj in self.items: tensor = self.resolve_fun(obj).detach() tensor = tensor.cpu() if tensor.storage().size() != tensor.numel(): tensor = tensor.clone() yield ( tensor, obj, ) class _OverlappingCpuLoader(_TensorLoader): def __init__( self, resolve_fun: Callable, stream: Optional[torch.Stream] = None, inflight_threshhold: int = 1_000_000, ) -> None: self.resolve_fun = resolve_fun self.items: List[Tuple[int, object]] = [] self.inflight_threshhold = inflight_threshhold self.in_flight_data = 0 self.current_items: collections.deque = collections.deque() self.idx = 0 self.started = False self.device_type = ( stream.device_type if stream else _get_available_device_type() ) self.device_module = _get_device_module(self.device_type) self.stream = cast( torch.cuda.Stream, stream or self.device_module.current_stream() ) if self.stream != self.device_module.current_stream(): self.stream.wait_stream(self.device_module.current_stream()) @property def _done(self) -> bool: return self.idx >= len(self.items) def _drain(self) -> List[Tuple[torch.Tensor, object]]: drained = [] if self.in_flight_data >= self.inflight_threshhold: self.stream.synchronize() while self.in_flight_data >= self.inflight_threshhold: val = self.current_items.popleft() self.in_flight_data -= val[0].numel() * val[0].element_size() drained.append(val) return drained def _refill(self) -> None: with self.device_module.stream(self.stream): while not self._done and self.in_flight_data < self.inflight_threshhold: _, obj = self.items[self.idx] self.idx += 1 tensor = self.resolve_fun(obj).detach() if tensor.device.type == self.device_type: tensor = tensor.to(device="cpu", non_blocking=True) elif tensor.device == torch.device("cpu"): if ( tensor.untyped_storage().size() != tensor.numel() * tensor.itemsize ): # this forces the tensor to be both contiguous and with minimal storage tensor = tensor.clone() self.current_items.append( ( tensor, obj, ) ) self.in_flight_data += tensor.numel() * tensor.element_size() def _finish(self) -> Iterable[Tuple[torch.Tensor, object]]: assert self._done if len(self.current_items) > 0: self.stream.synchronize() return self.current_items def add(self, size: int, obj: object) -> None: if self.started: raise RuntimeError("cannot add items after loading started") self.items.append((size, obj)) def start_loading(self) -> None: if self.started: return self.started = True self.items.sort(key=operator.itemgetter(0)) self._refill() def values(self) -> Iterator[Tuple[torch.Tensor, object]]: self.start_loading() while not self._done: drained = self._drain() self._refill() yield from drained yield from self._finish() def _item_size(item: WriteItem) -> int: size = 1 assert item.tensor_data is not None # can't use math.prod as PT needs to support older python for s in item.tensor_data.size: size *= s dtype = item.tensor_data.properties.dtype return size * torch._utils._element_size(dtype) def _split_by_size_and_type(bins: int, items: List[WriteItem]) -> List[List[WriteItem]]: if bins == 1: return [items] bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO] tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO] buckets: List[List[WriteItem]] = [[] for _ in range(bins)] bucket_sizes = [0 for _ in range(bins)] tensor_w.sort(key=_item_size, reverse=True) for i, wi in enumerate(bytes_w): buckets[i % bins].append(wi) for wi in tensor_w: # TODO replace with headq idx = min(enumerate(bucket_sizes), key=operator.itemgetter(1))[0] buckets[idx].append(wi) bucket_sizes[idx] += _item_size(wi) return buckets def _write_item( stream: io.IOBase, data: Union[io.BytesIO, torch.Tensor], write_item: WriteItem, storage_key: str, ) -> WriteResult: offset = stream.tell() if write_item.type == WriteItemType.BYTE_IO: assert isinstance(data, io.BytesIO) stream.write(data.getbuffer()) else: assert isinstance(data, torch.Tensor) assert data.device == torch.device("cpu") torch.save(data, cast(IO[bytes], stream)) length = stream.tell() - offset return WriteResult( index=write_item.index, size_in_bytes=length, storage_data=_StorageInfo(storage_key, offset, length), ) def _write_files_from_queue( create_stream: Callable, file_queue: queue.Queue, result_queue: queue.Queue, planner: SavePlanner, inflight_threshhold: int, use_fsync: bool, thread_count: int, ) -> None: try: while True: file_name, storage_key, write_items = file_queue.get_nowait() loader: _TensorLoader custom_backend_name = torch._C._get_privateuse1_backend_name() custom_device_mod = getattr(torch, custom_backend_name, None) # TODO: Using the OverlappingCpuLoader with multiple threads creates significant # performance degredation, observed as being related to cuda stream syncs. We # should try to fix this and use _OverlappingCpuLoader for all threaded cases if ( thread_count == 1 and ( torch.cuda.is_available() or (custom_device_mod and custom_device_mod.is_available()) ) and inflight_threshhold > 0 ): loader = _OverlappingCpuLoader( planner.resolve_data, inflight_threshhold=inflight_threshhold, ) else: loader = _SerialCpuLoader( planner.resolve_data, ) tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO] for write_item in tensor_w: loader.add(_item_size(write_item), write_item) loader.start_loading() bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO] write_results = [] with create_stream(file_name, "wb") as stream: for write_item in bytes_w: data = planner.resolve_data(write_item) write_results.append( _write_item(stream, data, write_item, storage_key) ) for tensor, write_item in loader.values(): assert tensor.is_cpu write_results.append( _write_item(stream, tensor, write_item, storage_key) ) if use_fsync: try: os.fsync(stream.fileno()) except AttributeError: os.sync() result_queue.put(write_results) except queue.Empty: pass class FileSystemBase(ABC): @contextmanager @abstractmethod def create_stream( self, path: Union[str, os.PathLike], mode: str ) -> Generator[io.IOBase, None, None]: ... @abstractmethod def concat_path( self, path: Union[str, os.PathLike], suffix: str ) -> Union[str, os.PathLike]: ... @abstractmethod def rename( self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike] ) -> None: ... @abstractmethod def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]: ... @abstractmethod def mkdir(self, path: Union[str, os.PathLike]) -> None: ... @classmethod @abstractmethod def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: ... @abstractmethod def exists(self, path: Union[str, os.PathLike]) -> bool: ... @abstractmethod def rm_file(self, path: Union[str, os.PathLike]) -> None: ... class FileSystem(FileSystemBase): @contextmanager def create_stream( self, path: Union[str, os.PathLike], mode: str ) -> Generator[io.IOBase, None, None]: with cast(Path, path).open(mode) as stream: yield cast(io.IOBase, stream) def concat_path( self, path: Union[str, os.PathLike], suffix: str ) -> Union[str, os.PathLike]: return cast(Path, path) / suffix def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]: if not isinstance(path, Path): path = Path(path) return path def rename( self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike] ) -> None: cast(Path, path).rename(cast(Path, new_path)) def mkdir(self, path: Union[str, os.PathLike]) -> None: cast(Path, path).mkdir(parents=True, exist_ok=True) @classmethod def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: if isinstance(checkpoint_id, Path): return True if "://" in str(checkpoint_id): return False for p in Path(checkpoint_id).parents: if p.exists() and os.access(str(p), os.W_OK): return True return False def exists(self, path: Union[str, os.PathLike]) -> bool: return cast(Path, path).exists() def rm_file(self, path: Union[str, os.PathLike]) -> None: cast(Path, path).unlink() class _FileSystemWriter(StorageWriter): """ Basic implementation of StorageWriter using file IO. This implementation makes the following assumptions and simplifications: * The checkpoint path is an empty or non-existing directory. * File creation is atomic The checkpoint consist of one file per write request plus a `.metadata` file with the serialized metadata. """ def __init__( self, path: Union[str, os.PathLike], single_file_per_rank: bool = True, sync_files: bool = True, thread_count: int = 1, per_thread_copy_ahead: int = 10_000_000, overwrite: bool = True, *args: Any, **kwargs: Any, ) -> None: """ Initialize the writer pointing to `path`. Args: path: directory where the checkpoint will be written to. single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. sync_files : force files to be synced to permanent storage. Default to True. thread_count: Number of IO threads to use to write. Default to 1. per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. overwrite: Whether to allow overwriting existing checkpoints. Defaults to True. N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. """ super().__init__() self.fs = FileSystem() self.path = self.fs.init_path(path) self.single_file_per_rank = single_file_per_rank self.sync_files = sync_files self.thread_count = thread_count self.per_thread_copy_ahead = per_thread_copy_ahead self.save_id = _generate_uuid() self.overwrite = overwrite def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None: if checkpoint_id: self.path = self.fs.init_path(checkpoint_id) self.save_id = _generate_uuid() def set_up_storage_writer(self, is_coordinator: bool) -> None: pass def prepare_local_plan(self, plan: SavePlan) -> SavePlan: self.fs.mkdir(self.path) if self.fs.exists(self.metadata_path): if self.overwrite: warnings.warn( f"Detected an existing checkpoint in {self.metadata_path}, overwriting since {self.overwrite=}." " Past version 2.5 of PyTorch, `overwrite` will default to False. Set this variable to True to" " maintain this functionality or False to raise when an existing checkpoint is found." ) else: raise RuntimeError(f"Checkpoint already exists and {self.overwrite=}.") return plan def prepare_global_plan(self, plans: List[SavePlan]) -> List[SavePlan]: new_plans = [ dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_")) for i, plan in enumerate(plans) ] return new_plans def write_data( self, plan: SavePlan, planner: SavePlanner, ) -> Future[List[WriteResult]]: storage_plan: _StoragePrefix = plan.storage_data file_count = 0 def gen_file(): nonlocal file_count file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}" file_count += 1 return file_name file_queue: queue.Queue = queue.Queue() if self.single_file_per_rank: for bucket in _split_by_size_and_type(self.thread_count, plan.items): file_name = gen_file() path = self.fs.concat_path(self.path, file_name) file_queue.put((path, file_name, bucket)) else: for item in plan.items: file_name = gen_file() path = self.fs.concat_path(self.path, file_name) file_queue.put((path, file_name, [item])) result_queue: queue.Queue = queue.Queue() threads = [] for _ in range(1, self.thread_count): t = threading.Thread( target=_write_files_from_queue, args=( self.fs.create_stream, file_queue, result_queue, planner, self.per_thread_copy_ahead, self.sync_files, self.thread_count, ), ) t.start() threads.append(t) _write_files_from_queue( create_stream=self.fs.create_stream, file_queue=file_queue, result_queue=result_queue, planner=planner, inflight_threshhold=self.per_thread_copy_ahead, use_fsync=self.sync_files, thread_count=self.thread_count, ) for t in threads: t.join() res = [] try: while True: res += result_queue.get_nowait() except queue.Empty: pass fut: Future[List[WriteResult]] = Future() fut.set_result(res) return fut def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None: storage_md = dict() for wr_list in results: storage_md.update({wr.index: wr.storage_data for wr in wr_list}) metadata.storage_data = storage_md metadata.storage_meta = self.storage_meta() tmp_path = cast(Path, self.fs.concat_path(self.path, f"{_metadata_fn}.tmp")) with self.fs.create_stream(tmp_path, "wb") as metadata_file: pickle.dump(metadata, metadata_file) if self.sync_files: try: os.fsync(metadata_file.fileno()) except AttributeError: os.sync() # delete in-case other checkpoints were present. if self.fs.exists(self.metadata_path): self.fs.rm_file(self.metadata_path) self.fs.rename(tmp_path, self.metadata_path) def storage_meta(self) -> Optional[StorageMeta]: return StorageMeta(checkpoint_id=self.checkpoint_id, save_id=self.save_id) @property def metadata_path(self) -> Union[str, os.PathLike]: return cast(Path, self.fs.concat_path(self.path, _metadata_fn)) @property def checkpoint_id(self) -> Union[str, os.PathLike]: """ return the checkpoint_id that will be used to save the checkpoint. """ return self.path @classmethod def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: return FileSystem.validate_checkpoint_id(checkpoint_id) class FileSystemReader(StorageReader): def __init__(self, path: Union[str, os.PathLike]) -> None: super().__init__() self.fs = FileSystem() self.path = self.fs.init_path(path) self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict() self.load_id = _generate_uuid() def _slice_file(self, file, sinfo: _StorageInfo) -> io.IOBase: return _create_file_view(file, sinfo.offset, sinfo.length) def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None: self.storage_data = dict() if checkpoint_id: self.path = self.fs.init_path(checkpoint_id) self.load_id = _generate_uuid() def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]: # group requests by file per_file: Dict[str, List[ReadItem]] = dict() for read_item in plan.items: item_md = self.storage_data[read_item.storage_index] path = item_md.relative_path per_file.setdefault(path, []).append(read_item) for relative_path, reqs in per_file.items(): new_path = self.fs.concat_path(self.path, relative_path) with self.fs.create_stream(new_path, "rb") as stream: # TODO sort by offset and cache the reading for req in reqs: item_md = self.storage_data[req.storage_index] file_slice = self._slice_file(stream, item_md) if req.type == LoadItemType.BYTE_IO: read_bytes = io.BytesIO(file_slice.read(item_md.length)) read_bytes.seek(0) planner.load_bytes(req, read_bytes) else: tensor = cast( Tensor, torch.load( cast(IO[bytes], file_slice), map_location="cpu", weights_only=True, ), ) tensor = narrow_tensor_by_index( tensor, req.storage_offsets, req.lengths ) target_tensor = planner.resolve_tensor(req).detach() assert ( target_tensor.size() == tensor.size() ), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}" target_tensor.copy_(tensor) planner.commit_tensor(req, target_tensor) fut: Future = Future() fut.set_result(None) return fut # Implementing the abstract function in StorageReader def read_metadata(self) -> Metadata: path = self.fs.concat_path(self.path, ".metadata") with self.fs.create_stream(path, "rb") as metadata_file: metadata = pickle.load(metadata_file) if getattr(metadata, "storage_meta", None) is None: metadata.storage_meta = StorageMeta() metadata.storage_meta.load_id = self.load_id return metadata def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None: self.storage_data = metadata.storage_data assert self.storage_data is not None def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan: return plan def prepare_global_plan(self, plans: List[LoadPlan]) -> List[LoadPlan]: return plans @property def checkpoint_id(self) -> Union[str, os.PathLike]: """ return the checkpoint_id that will be used to save the checkpoint. """ return self.path @classmethod def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: return FileSystem.validate_checkpoint_id(checkpoint_id) class FileSystemWriter(_FileSystemWriter, BlockingAsyncStager): """ Basic implementation of StorageWriter using file IO. This implementation makes the following assumptions and simplifications: * The checkpoint path is an empty or non-existing directory. * File creation is atomic The checkpoint consist of one file per write request plus a `.metadata` file with the serialized metadata. """ def __init__( self, path: Union[str, os.PathLike], single_file_per_rank: bool = True, sync_files: bool = True, thread_count: int = 1, per_thread_copy_ahead: int = 10_000_000, cache_staged_state_dict: bool = False, overwrite: bool = True, ) -> None: """ Initialize the writer pointing to `path`. Args: path: directory where the checkpoint will be written to. single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. sync_files : force files to be synced to permanent storage. Default to True. thread_count: Number of IO threads to use to write. Default to 1. per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. cache_staged_state_dict: Whether to cache the staged state_dict. This option decreases staging latency at the cost of increases memory usage. Additionally, if this parameter is set to True, it's the expectation that the stager is maintained and re-used for multiple dcp.async_save calls. Default to False. overwrite: Whether to allow overwriting existing checkpoints. Defaults to True. N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. """ super().__init__( path=path, single_file_per_rank=single_file_per_rank, sync_files=sync_files, thread_count=thread_count, per_thread_copy_ahead=per_thread_copy_ahead, cache_staged_state_dict=cache_staged_state_dict, overwrite=overwrite, ) def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: """Override of AsyncStager.stage""" # in the async case, the state dict is already on CPU, so maintaining this # buffer makes no sense self.per_thread_copy_ahead = 0 return super().stage(state_dict)