#!/usr/bin/env python3 # mypy: allow-untyped-defs # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Superset of ``torch.distributed.launch``. ``torchrun`` provides a superset of the functionality as ``torch.distributed.launch`` with the following additional functionalities: 1. Worker failures are handled gracefully by restarting all workers. 2. Worker ``RANK`` and ``WORLD_SIZE`` are assigned automatically. 3. Number of nodes is allowed to change between minimum and maximum sizes (elasticity). .. note:: ``torchrun`` is a python `console script `_ to the main module `torch.distributed.run `_ declared in the ``entry_points`` configuration in `setup.py `_. It is equivalent to invoking ``python -m torch.distributed.run``. Transitioning from torch.distributed.launch to torchrun ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``torchrun`` supports the same arguments as ``torch.distributed.launch`` **except** for ``--use-env`` which is now deprecated. To migrate from ``torch.distributed.launch`` to ``torchrun`` follow these steps: 1. If your training script is already reading ``local_rank`` from the ``LOCAL_RANK`` environment variable. Then you need simply omit the ``--use-env`` flag, e.g.: +--------------------------------------------------------------------+--------------------------------------------+ | ``torch.distributed.launch`` | ``torchrun`` | +====================================================================+============================================+ | | | | .. code-block:: shell-session | .. code-block:: shell-session | | | | | $ python -m torch.distributed.launch --use-env train_script.py | $ torchrun train_script.py | | | | +--------------------------------------------------------------------+--------------------------------------------+ 2. If your training script reads local rank from a ``--local-rank`` cmd argument. Change your training script to read from the ``LOCAL_RANK`` environment variable as demonstrated by the following code snippet: +-------------------------------------------------------+----------------------------------------------------+ | ``torch.distributed.launch`` | ``torchrun`` | +=======================================================+====================================================+ | | | | .. code-block:: python | .. code-block:: python | | | | | | | | import argparse | import os | | parser = argparse.ArgumentParser() | local_rank = int(os.environ["LOCAL_RANK"]) | | parser.add_argument("--local-rank", type=int) | | | args = parser.parse_args() | | | | | | local_rank = args.local_rank | | | | | +-------------------------------------------------------+----------------------------------------------------+ .. versionchanged:: 2.0.0 The launcher will pass the ``--local-rank=`` argument to your script. From PyTorch 2.0.0 onwards, the dashed ``--local-rank`` is preferred over the previously used underscored ``--local_rank``. For backward compatibility, it may be necessary for users to handle both cases in their argument parsing code. This means including both ``"--local-rank"`` and ``"--local_rank"`` in the argument parser. If only ``"--local_rank"`` is provided, the launcher will trigger an error: "error: unrecognized arguments: --local-rank=". For training code that only supports PyTorch 2.0.0+, including ``"--local-rank"`` should be sufficient. :: >>> # xdoctest: +SKIP >>> import argparse >>> parser = argparse.ArgumentParser() >>> parser.add_argument("--local-rank", "--local_rank", type=int) >>> args = parser.parse_args() The aformentioned changes suffice to migrate from ``torch.distributed.launch`` to ``torchrun``. To take advantage of new features such as elasticity, fault-tolerance, and error reporting of ``torchrun`` please refer to: * :ref:`elastic_train_script` for more information on authoring training scripts that are ``torchrun`` compliant. * the rest of this page for more information on the features of ``torchrun``. Usage -------- Single-node multi-worker ++++++++++++++++++++++++++++++ :: torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_TRAINERS YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...) Stacked single-node multi-worker +++++++++++++++++++++++++++++++++++ To run multiple instances (separate jobs) of single-node, multi-worker on the same host, we need to make sure that each instance (job) is setup on different ports to avoid port conflicts (or worse, two jobs being merged as a single job). To do this you have to run with ``--rdzv-backend=c10d`` and specify a different port by setting ``--rdzv-endpoint=localhost:$PORT_k``. For ``--nodes=1``, its often convenient to let ``torchrun`` pick a free random port automatically instead of manually assigning different ports for each run. :: torchrun --rdzv-backend=c10d --rdzv-endpoint=localhost:0 --nnodes=1 --nproc-per-node=$NUM_TRAINERS YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...) Fault tolerant (fixed sized number of workers, no elasticity, tolerates 3 failures) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ :: torchrun --nnodes=$NUM_NODES --nproc-per-node=$NUM_TRAINERS --max-restarts=3 --rdzv-id=$JOB_ID --rdzv-backend=c10d --rdzv-endpoint=$HOST_NODE_ADDR YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...) ``HOST_NODE_ADDR``, in form [:] (e.g. node1.example.com:29400), specifies the node and the port on which the C10d rendezvous backend should be instantiated and hosted. It can be any node in your training cluster, but ideally you should pick a node that has a high bandwidth. .. note:: If no port number is specified ``HOST_NODE_ADDR`` defaults to 29400. Elastic (``min=1``, ``max=4``, tolerates up to 3 membership changes or failures) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ :: torchrun --nnodes=1:4 --nproc-per-node=$NUM_TRAINERS --max-restarts=3 --rdzv-id=$JOB_ID --rdzv-backend=c10d --rdzv-endpoint=$HOST_NODE_ADDR YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...) ``HOST_NODE_ADDR``, in form [:] (e.g. node1.example.com:29400), specifies the node and the port on which the C10d rendezvous backend should be instantiated and hosted. It can be any node in your training cluster, but ideally you should pick a node that has a high bandwidth. .. note:: If no port number is specified ``HOST_NODE_ADDR`` defaults to 29400. Note on rendezvous backend ------------------------------ For multi-node training you need to specify: 1. ``--rdzv-id``: A unique job id (shared by all nodes participating in the job) 2. ``--rdzv-backend``: An implementation of :py:class:`torch.distributed.elastic.rendezvous.RendezvousHandler` 3. ``--rdzv-endpoint``: The endpoint where the rendezvous backend is running; usually in form ``host:port``. Currently ``c10d`` (recommended), ``etcd-v2``, and ``etcd`` (legacy) rendezvous backends are supported out of the box. To use ``etcd-v2`` or ``etcd``, setup an etcd server with the ``v2`` api enabled (e.g. ``--enable-v2``). .. warning:: ``etcd-v2`` and ``etcd`` rendezvous use etcd API v2. You MUST enable the v2 API on the etcd server. Our tests use etcd v3.4.3. .. warning:: For etcd-based rendezvous we recommend using ``etcd-v2`` over ``etcd`` which is functionally equivalent, but uses a revised implementation. ``etcd`` is in maintenance mode and will be removed in a future version. Definitions -------------- 1. ``Node`` - A physical instance or a container; maps to the unit that the job manager works with. 2. ``Worker`` - A worker in the context of distributed training. 3. ``WorkerGroup`` - The set of workers that execute the same function (e.g. trainers). 4. ``LocalWorkerGroup`` - A subset of the workers in the worker group running on the same node. 5. ``RANK`` - The rank of the worker within a worker group. 6. ``WORLD_SIZE`` - The total number of workers in a worker group. 7. ``LOCAL_RANK`` - The rank of the worker within a local worker group. 8. ``LOCAL_WORLD_SIZE`` - The size of the local worker group. 9. ``rdzv_id`` - A user-defined id that uniquely identifies the worker group for a job. This id is used by each node to join as a member of a particular worker group. 9. ``rdzv_backend`` - The backend of the rendezvous (e.g. ``c10d``). This is typically a strongly consistent key-value store. 10. ``rdzv_endpoint`` - The rendezvous backend endpoint; usually in form ``:``. A ``Node`` runs ``LOCAL_WORLD_SIZE`` workers which comprise a ``LocalWorkerGroup``. The union of all ``LocalWorkerGroups`` in the nodes in the job comprise the ``WorkerGroup``. Environment Variables ---------------------- The following environment variables are made available to you in your script: 1. ``LOCAL_RANK`` - The local rank. 2. ``RANK`` - The global rank. 3. ``GROUP_RANK`` - The rank of the worker group. A number between 0 and ``max_nnodes``. When running a single worker group per node, this is the rank of the node. 4. ``ROLE_RANK`` - The rank of the worker across all the workers that have the same role. The role of the worker is specified in the ``WorkerSpec``. 5. ``LOCAL_WORLD_SIZE`` - The local world size (e.g. number of workers running locally); equals to ``--nproc-per-node`` specified on ``torchrun``. 6. ``WORLD_SIZE`` - The world size (total number of workers in the job). 7. ``ROLE_WORLD_SIZE`` - The total number of workers that was launched with the same role specified in ``WorkerSpec``. 8. ``MASTER_ADDR`` - The FQDN of the host that is running worker with rank 0; used to initialize the Torch Distributed backend. 9. ``MASTER_PORT`` - The port on the ``MASTER_ADDR`` that can be used to host the C10d TCP store. 10. ``TORCHELASTIC_RESTART_COUNT`` - The number of worker group restarts so far. 11. ``TORCHELASTIC_MAX_RESTARTS`` - The configured maximum number of restarts. 12. ``TORCHELASTIC_RUN_ID`` - Equal to the rendezvous ``run_id`` (e.g. unique job id). 13. ``PYTHON_EXEC`` - System executable override. If provided, the python user script will use the value of ``PYTHON_EXEC`` as executable. The `sys.executable` is used by default. Deployment ------------ 1. (Not needed for the C10d backend) Start the rendezvous backend server and get the endpoint (to be passed as ``--rdzv-endpoint`` to the launcher script) 2. Single-node multi-worker: Start the launcher on the host to start the agent process which creates and monitors a local worker group. 3. Multi-node multi-worker: Start the launcher with the same arguments on all the nodes participating in training. When using a job/cluster manager the entry point command to the multi-node job should be this launcher. Failure Modes --------------- 1. Worker failure: For a training job with ``n`` workers, if ``k<=n`` workers fail all workers are stopped and restarted up to ``max_restarts``. 2. Agent failure: An agent failure results in a local worker group failure. It is up to the job manager to fail the entire job (gang semantics) or attempt to replace the node. Both behaviors are supported by the agent. 3. Node failure: Same as agent failure. Membership Changes -------------------- 1. Node departure (scale-down): The agent is notified of the departure, all existing workers are stopped, a new ``WorkerGroup`` is formed, and all workers are started with a new ``RANK`` and ``WORLD_SIZE``. 2. Node arrival (scale-up): The new node is admitted to the job, all existing workers are stopped, a new ``WorkerGroup`` is formed, and all workers are started with a new ``RANK`` and ``WORLD_SIZE``. Important Notices -------------------- 1. This utility and multi-process distributed (single-node or multi-node) GPU training currently only achieves the best performance using the NCCL distributed backend. Thus NCCL backend is the recommended backend to use for GPU training. 2. The environment variables necessary to initialize a Torch process group are provided to you by this module, no need for you to pass ``RANK`` manually. To initialize a process group in your training script, simply run: :: >>> # xdoctest: +SKIP("stub") >>> import torch.distributed as dist >>> dist.init_process_group(backend="gloo|nccl") 3. In your training program, you can either use regular distributed functions or use :func:`torch.nn.parallel.DistributedDataParallel` module. If your training program uses GPUs for training and you would like to use :func:`torch.nn.parallel.DistributedDataParallel` module, here is how to configure it. :: local_rank = int(os.environ["LOCAL_RANK"]) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) Please ensure that ``device_ids`` argument is set to be the only GPU device id that your code will be operating on. This is generally the local rank of the process. In other words, the ``device_ids`` needs to be ``[int(os.environ("LOCAL_RANK"))]``, and ``output_device`` needs to be ``int(os.environ("LOCAL_RANK"))`` in order to use this utility 4. On failures or membership changes ALL surviving workers are killed immediately. Make sure to checkpoint your progress. The frequency of checkpoints should depend on your job's tolerance for lost work. 5. This module only supports homogeneous ``LOCAL_WORLD_SIZE``. That is, it is assumed that all nodes run the same number of local workers (per role). 6. ``RANK`` is NOT stable. Between restarts, the local workers on a node can be assigned a different range of ranks than before. NEVER hard code any assumptions about the stable-ness of ranks or some correlation between ``RANK`` and ``LOCAL_RANK``. 7. When using elasticity (``min_size!=max_size``) DO NOT hard code assumptions about ``WORLD_SIZE`` as the world size can change as nodes are allowed to leave and join. 8. It is recommended for your script to have the following structure: :: def main(): load_checkpoint(checkpoint_path) initialize() train() def train(): for batch in iter(dataset): train_step(batch) if should_checkpoint: save_checkpoint(checkpoint_path) 9. (Recommended) On worker errors, this tool will summarize the details of the error (e.g. time, rank, host, pid, traceback, etc). On each node, the first error (by timestamp) is heuristically reported as the "Root Cause" error. To get tracebacks as part of this error summary print out, you must decorate your main entrypoint function in your training script as shown in the example below. If not decorated, then the summary will not include the traceback of the exception and will only contain the exitcode. For details on torchelastic error handling see: https://pytorch.org/docs/stable/elastic/errors.html :: from torch.distributed.elastic.multiprocessing.errors import record @record def main(): # do train pass if __name__ == "__main__": main() """ import logging import os import sys import uuid import importlib.metadata as metadata from argparse import REMAINDER, ArgumentParser from typing import Callable, List, Tuple, Type, Union, Optional, Set import torch from torch.distributed.argparse_util import check_env, env from torch.distributed.elastic.multiprocessing import DefaultLogsSpecs, LogsSpecs, Std from torch.distributed.elastic.multiprocessing.errors import record from torch.distributed.elastic.rendezvous.utils import _parse_rendezvous_config from torch.distributed.elastic.utils import macros from torch.distributed.elastic.utils.logging import get_logger from torch.distributed.launcher.api import LaunchConfig, elastic_launch from torch.utils.backend_registration import _get_custom_mod_func logger = get_logger(__name__) def get_args_parser() -> ArgumentParser: """Parse the command line options.""" parser = ArgumentParser(description="Torch Distributed Elastic Training Launcher") # # Worker/node size related arguments. # parser.add_argument( "--nnodes", action=env, type=str, default="1:1", help="Number of nodes, or the range of nodes in form :.", ) parser.add_argument( "--nproc-per-node", "--nproc_per_node", action=env, type=str, default="1", help="Number of workers per node; supported values: [auto, cpu, gpu, int].", ) # # Rendezvous related arguments # parser.add_argument( "--rdzv-backend", "--rdzv_backend", action=env, type=str, default="static", help="Rendezvous backend.", ) parser.add_argument( "--rdzv-endpoint", "--rdzv_endpoint", action=env, type=str, default="", help="Rendezvous backend endpoint; usually in form :.", ) parser.add_argument( "--rdzv-id", "--rdzv_id", action=env, type=str, default="none", help="User-defined group id.", ) parser.add_argument( "--rdzv-conf", "--rdzv_conf", action=env, type=str, default="", help="Additional rendezvous configuration (=,=,...).", ) parser.add_argument( "--standalone", action=check_env, help="Start a local standalone rendezvous backend that is represented by a C10d TCP store " "on a free port. Useful when launching single-node, multi-worker job. If specified " "--rdzv-backend, --rdzv-endpoint, --rdzv-id are auto-assigned and any explicitly set values " "are ignored.", ) # # User-code launch related arguments. # parser.add_argument( "--max-restarts", "--max_restarts", action=env, type=int, default=0, help="Maximum number of worker group restarts before failing.", ) parser.add_argument( "--monitor-interval", "--monitor_interval", action=env, type=float, default=0.1, help="Interval, in seconds, to monitor the state of workers.", ) parser.add_argument( "--start-method", "--start_method", action=env, type=str, default="spawn", choices=["spawn", "fork", "forkserver"], help="Multiprocessing start method to use when creating workers.", ) parser.add_argument( "--role", action=env, type=str, default="default", help="User-defined role for the workers.", ) parser.add_argument( "-m", "--module", action=check_env, help="Change each process to interpret the launch script as a Python module, executing " "with the same behavior as 'python -m'.", ) parser.add_argument( "--no-python", "--no_python", action=check_env, help="Skip prepending the training script with 'python' - just execute it directly. Useful " "when the script is not a Python script.", ) parser.add_argument( "--run-path", "--run_path", action=check_env, help="Run the training script with runpy.run_path in the same interpreter." " Script must be provided as an abs path (e.g. /abs/path/script.py)." " Takes precedence over --no-python.", ) parser.add_argument( "--log-dir", "--log_dir", action=env, type=str, default=None, help="Base directory to use for log files (e.g. /var/log/torch/elastic). The same " "directory is re-used for multiple runs (a unique job-level sub-directory is created with " "rdzv_id as the prefix).", ) parser.add_argument( "-r", "--redirects", action=env, type=str, default="0", help="Redirect std streams into a log file in the log directory (e.g. [-r 3] redirects " "both stdout+stderr for all workers, [-r 0:1,1:2] redirects stdout for local rank 0 and " "stderr for local rank 1).", ) parser.add_argument( "-t", "--tee", action=env, type=str, default="0", help="Tee std streams into a log file and also to console (see --redirects for format).", ) parser.add_argument( "--local-ranks-filter", "--local_ranks_filter", action=env, type=str, default="", help="Only show logs from specified ranks in console (e.g. [--local_ranks_filter=0,1,2] will " "only show logs from rank 0, 1 and 2). This will only apply to stdout and stderr, not to" "log files saved via --redirect or --tee", ) # # Backwards compatible parameters with caffe2.distributed.launch. # parser.add_argument( "--node-rank", "--node_rank", type=int, action=env, default=0, help="Rank of the node for multi-node distributed training.", ) parser.add_argument( "--master-addr", "--master_addr", default="127.0.0.1", type=str, action=env, help="Address of the master node (rank 0) that only used for static rendezvous. It should " "be either the IP address or the hostname of rank 0. For single node multi-proc training " "the --master-addr can simply be 127.0.0.1; IPv6 should have the pattern " "`[0:0:0:0:0:0:0:1]`.", ) parser.add_argument( "--master-port", "--master_port", default=29500, type=int, action=env, help="Port on the master node (rank 0) to be used for communication during distributed " "training. It is only used for static rendezvous.", ) parser.add_argument( "--local-addr", "--local_addr", default=None, type=str, action=env, help="Address of the local node. If specified, will use the given address for connection. " "Else, will look up the local node address instead. Else, it will be default to local " "machine's FQDN.", ) parser.add_argument( "--logs-specs", "--logs_specs", default=None, type=str, help="torchrun.logs_specs group entrypoint name, value must be type of LogsSpecs. " "Can be used to override custom logging behavior.", ) # # Positional arguments. # parser.add_argument( "training_script", type=str, help="Full path to the (single GPU) training program/script to be launched in parallel, " "followed by all the arguments for the training script.", ) # Rest from the training program. parser.add_argument("training_script_args", nargs=REMAINDER) return parser def parse_args(args): parser = get_args_parser() return parser.parse_args(args) def parse_min_max_nnodes(nnodes: str): arr = nnodes.split(":") if len(arr) == 1: min_nodes = max_nodes = int(arr[0]) elif len(arr) == 2: min_nodes = int(arr[0]) max_nodes = int(arr[1]) else: raise RuntimeError(f'nnodes={nnodes} is not in "MIN:MAX" format') # noqa: E231 return min_nodes, max_nodes def determine_local_world_size(nproc_per_node: str): try: logging.info("Using nproc_per_node=%s.", nproc_per_node) return int(nproc_per_node) except ValueError as e: if nproc_per_node == "cpu": num_proc = os.cpu_count() device_type = "cpu" elif nproc_per_node == "gpu": if not torch.cuda.is_available(): raise ValueError("Cuda is not available.") from e device_type = "gpu" num_proc = torch.cuda.device_count() elif nproc_per_node == torch._C._get_privateuse1_backend_name(): if not _get_custom_mod_func("is_available")(): raise ValueError(f"{nproc_per_node} is not available.") from e device_type = nproc_per_node num_proc = _get_custom_mod_func("device_count")() elif nproc_per_node == "auto": if torch.cuda.is_available(): num_proc = torch.cuda.device_count() device_type = "gpu" elif hasattr(torch, torch._C._get_privateuse1_backend_name()) and \ _get_custom_mod_func("is_available")(): num_proc = _get_custom_mod_func("device_count")() device_type = torch._C._get_privateuse1_backend_name() else: num_proc = os.cpu_count() device_type = "cpu" else: raise ValueError(f"Unsupported nproc_per_node value: {nproc_per_node}") from e logger.info( "Using nproc_per_node=%s," " setting to %s since the instance " "has %s %s", nproc_per_node, num_proc, os.cpu_count(), device_type ) return num_proc def get_rdzv_endpoint(args): if args.rdzv_backend == "static" and not args.rdzv_endpoint: return f"{args.master_addr}:{args.master_port}" # noqa: E231 return args.rdzv_endpoint def get_use_env(args) -> bool: """ Retrieve ``use_env`` from the args. ``use_env`` is a legacy argument, if ``use_env`` is False, the ``--node-rank`` argument will be transferred to all worker processes. ``use_env`` is only used by the ``torch.distributed.launch`` and will be deprecated in future releases. """ if not hasattr(args, "use_env"): return True return args.use_env def _get_logs_specs_class(logs_specs_name: Optional[str]) -> Type[LogsSpecs]: """ Attemps to load `torchrun.logs_spec` entrypoint with key of `logs_specs_name` param. Provides plugin mechanism to provide custom implementation of LogsSpecs. Returns `DefaultLogsSpecs` when logs_spec_name is None. Raises ValueError when entrypoint for `logs_spec_name` can't be found in entrypoints. """ logs_specs_cls = None if logs_specs_name is not None: eps = metadata.entry_points() if hasattr(eps, "select"): # >= 3.10 group = eps.select(group="torchrun.logs_specs") if group.select(name=logs_specs_name): logs_specs_cls = group[logs_specs_name].load() elif specs := eps.get("torchrun.logs_specs"): # < 3.10 if entrypoint_list := [ep for ep in specs if ep.name == logs_specs_name]: logs_specs_cls = entrypoint_list[0].load() if logs_specs_cls is None: raise ValueError(f"Could not find entrypoint under 'torchrun.logs_specs[{logs_specs_name}]' key") logging.info("Using logs_spec '%s' mapped to %s", logs_specs_name, str(logs_specs_cls)) else: logs_specs_cls = DefaultLogsSpecs return logs_specs_cls def config_from_args(args) -> Tuple[LaunchConfig, Union[Callable, str], List[str]]: # If ``args`` not passed, defaults to ``sys.argv[:1]`` min_nodes, max_nodes = parse_min_max_nnodes(args.nnodes) assert 0 < min_nodes <= max_nodes assert args.max_restarts >= 0 if hasattr(args, "master_addr") and args.rdzv_backend != "static" and not args.rdzv_endpoint: logger.warning( "master_addr is only used for static rdzv_backend and when rdzv_endpoint " "is not specified." ) nproc_per_node = determine_local_world_size(args.nproc_per_node) if "OMP_NUM_THREADS" not in os.environ and nproc_per_node > 1: omp_num_threads = 1 logger.warning( "\n*****************************************\n" "Setting OMP_NUM_THREADS environment variable for each process to be " "%s in default, to avoid your system being overloaded, " "please further tune the variable for optimal performance in " "your application as needed. \n" "*****************************************", omp_num_threads ) # This env variable will be passed down to the subprocesses os.environ["OMP_NUM_THREADS"] = str(omp_num_threads) log_line_prefix_template = os.getenv("TORCHELASTIC_LOG_LINE_PREFIX_TEMPLATE") rdzv_configs = _parse_rendezvous_config(args.rdzv_conf) if args.rdzv_backend == "static": rdzv_configs["rank"] = args.node_rank rdzv_endpoint = get_rdzv_endpoint(args) ranks: Optional[Set[int]] = None if args.local_ranks_filter: try: ranks = set(map(int, args.local_ranks_filter.split(","))) assert ranks except Exception as e: raise ValueError( "--local_ranks_filter must be a comma-separated list of integers e.g. --local_ranks_filter=0,1,2" ) from e logs_specs_cls: Type[LogsSpecs] = _get_logs_specs_class(args.logs_specs) logs_specs = logs_specs_cls( log_dir=args.log_dir, redirects=Std.from_str(args.redirects), tee=Std.from_str(args.tee), local_ranks_filter=ranks, ) config = LaunchConfig( min_nodes=min_nodes, max_nodes=max_nodes, nproc_per_node=nproc_per_node, run_id=args.rdzv_id, role=args.role, rdzv_endpoint=rdzv_endpoint, rdzv_backend=args.rdzv_backend, rdzv_configs=rdzv_configs, max_restarts=args.max_restarts, monitor_interval=args.monitor_interval, start_method=args.start_method, log_line_prefix_template=log_line_prefix_template, local_addr=args.local_addr, logs_specs=logs_specs, ) with_python = not args.no_python cmd: Union[Callable, str] cmd_args = [] use_env = get_use_env(args) if args.run_path: cmd = run_script_path cmd_args.append(args.training_script) else: if with_python: cmd = os.getenv("PYTHON_EXEC", sys.executable) cmd_args.append("-u") if args.module: cmd_args.append("-m") cmd_args.append(args.training_script) else: if args.module: raise ValueError( "Don't use both the '--no-python' flag" " and the '--module' flag at the same time." ) cmd = args.training_script if not use_env: cmd_args.append(f"--local-rank={macros.local_rank}") cmd_args.extend(args.training_script_args) return config, cmd, cmd_args def run_script_path(training_script: str, *training_script_args: str): """ Run the provided `training_script` from within this interpreter. Usage: `script_as_function("/abs/path/to/script.py", "--arg1", "val1")` """ import runpy import sys sys.argv = [training_script] + [*training_script_args] runpy.run_path(sys.argv[0], run_name="__main__") def run(args): if args.standalone: args.rdzv_backend = "c10d" args.rdzv_endpoint = "localhost:0" args.rdzv_id = str(uuid.uuid4()) logger.info( "\n**************************************\n" "Rendezvous info:\n" "--rdzv-backend=%s " "--rdzv-endpoint=%s " "--rdzv-id=%s\n" "**************************************\n", args.rdzv_backend, args.rdzv_endpoint, args.rdzv_id ) config, cmd, cmd_args = config_from_args(args) elastic_launch( config=config, entrypoint=cmd, )(*cmd_args) @record def main(args=None): args = parse_args(args) run(args) if __name__ == "__main__": main()