# mypy: allow-untyped-defs import torch import torch.nn.functional as F from torch.distributions import constraints from torch.distributions.distribution import Distribution from torch.distributions.utils import ( broadcast_all, lazy_property, logits_to_probs, probs_to_logits, ) __all__ = ["NegativeBinomial"] class NegativeBinomial(Distribution): r""" Creates a Negative Binomial distribution, i.e. distribution of the number of successful independent and identical Bernoulli trials before :attr:`total_count` failures are achieved. The probability of success of each Bernoulli trial is :attr:`probs`. Args: total_count (float or Tensor): non-negative number of negative Bernoulli trials to stop, although the distribution is still valid for real valued count probs (Tensor): Event probabilities of success in the half open interval [0, 1) logits (Tensor): Event log-odds for probabilities of success """ arg_constraints = { "total_count": constraints.greater_than_eq(0), "probs": constraints.half_open_interval(0.0, 1.0), "logits": constraints.real, } support = constraints.nonnegative_integer def __init__(self, total_count, probs=None, logits=None, validate_args=None): if (probs is None) == (logits is None): raise ValueError( "Either `probs` or `logits` must be specified, but not both." ) if probs is not None: ( self.total_count, self.probs, ) = broadcast_all(total_count, probs) self.total_count = self.total_count.type_as(self.probs) else: ( self.total_count, self.logits, ) = broadcast_all(total_count, logits) self.total_count = self.total_count.type_as(self.logits) self._param = self.probs if probs is not None else self.logits batch_shape = self._param.size() super().__init__(batch_shape, validate_args=validate_args) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(NegativeBinomial, _instance) batch_shape = torch.Size(batch_shape) new.total_count = self.total_count.expand(batch_shape) if "probs" in self.__dict__: new.probs = self.probs.expand(batch_shape) new._param = new.probs if "logits" in self.__dict__: new.logits = self.logits.expand(batch_shape) new._param = new.logits super(NegativeBinomial, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new def _new(self, *args, **kwargs): return self._param.new(*args, **kwargs) @property def mean(self): return self.total_count * torch.exp(self.logits) @property def mode(self): return ((self.total_count - 1) * self.logits.exp()).floor().clamp(min=0.0) @property def variance(self): return self.mean / torch.sigmoid(-self.logits) @lazy_property def logits(self): return probs_to_logits(self.probs, is_binary=True) @lazy_property def probs(self): return logits_to_probs(self.logits, is_binary=True) @property def param_shape(self): return self._param.size() @lazy_property def _gamma(self): # Note we avoid validating because self.total_count can be zero. return torch.distributions.Gamma( concentration=self.total_count, rate=torch.exp(-self.logits), validate_args=False, ) def sample(self, sample_shape=torch.Size()): with torch.no_grad(): rate = self._gamma.sample(sample_shape=sample_shape) return torch.poisson(rate) def log_prob(self, value): if self._validate_args: self._validate_sample(value) log_unnormalized_prob = self.total_count * F.logsigmoid( -self.logits ) + value * F.logsigmoid(self.logits) log_normalization = ( -torch.lgamma(self.total_count + value) + torch.lgamma(1.0 + value) + torch.lgamma(self.total_count) ) # The case self.total_count == 0 and value == 0 has probability 1 but # lgamma(0) is infinite. Handle this case separately using a function # that does not modify tensors in place to allow Jit compilation. log_normalization = log_normalization.masked_fill( self.total_count + value == 0.0, 0.0 ) return log_unnormalized_prob - log_normalization