# mypy: allow-untyped-defs from functools import update_wrapper from numbers import Number from typing import Any, Dict import torch import torch.nn.functional as F from torch.overrides import is_tensor_like euler_constant = 0.57721566490153286060 # Euler Mascheroni Constant __all__ = [ "broadcast_all", "logits_to_probs", "clamp_probs", "probs_to_logits", "lazy_property", "tril_matrix_to_vec", "vec_to_tril_matrix", ] def broadcast_all(*values): r""" Given a list of values (possibly containing numbers), returns a list where each value is broadcasted based on the following rules: - `torch.*Tensor` instances are broadcasted as per :ref:`_broadcasting-semantics`. - numbers.Number instances (scalars) are upcast to tensors having the same size and type as the first tensor passed to `values`. If all the values are scalars, then they are upcasted to scalar Tensors. Args: values (list of `numbers.Number`, `torch.*Tensor` or objects implementing __torch_function__) Raises: ValueError: if any of the values is not a `numbers.Number` instance, a `torch.*Tensor` instance, or an instance implementing __torch_function__ """ if not all(is_tensor_like(v) or isinstance(v, Number) for v in values): raise ValueError( "Input arguments must all be instances of numbers.Number, " "torch.Tensor or objects implementing __torch_function__." ) if not all(is_tensor_like(v) for v in values): options: Dict[str, Any] = dict(dtype=torch.get_default_dtype()) for value in values: if isinstance(value, torch.Tensor): options = dict(dtype=value.dtype, device=value.device) break new_values = [ v if is_tensor_like(v) else torch.tensor(v, **options) for v in values ] return torch.broadcast_tensors(*new_values) return torch.broadcast_tensors(*values) def _standard_normal(shape, dtype, device): if torch._C._get_tracing_state(): # [JIT WORKAROUND] lack of support for .normal_() return torch.normal( torch.zeros(shape, dtype=dtype, device=device), torch.ones(shape, dtype=dtype, device=device), ) return torch.empty(shape, dtype=dtype, device=device).normal_() def _sum_rightmost(value, dim): r""" Sum out ``dim`` many rightmost dimensions of a given tensor. Args: value (Tensor): A tensor of ``.dim()`` at least ``dim``. dim (int): The number of rightmost dims to sum out. """ if dim == 0: return value required_shape = value.shape[:-dim] + (-1,) return value.reshape(required_shape).sum(-1) def logits_to_probs(logits, is_binary=False): r""" Converts a tensor of logits into probabilities. Note that for the binary case, each value denotes log odds, whereas for the multi-dimensional case, the values along the last dimension denote the log probabilities (possibly unnormalized) of the events. """ if is_binary: return torch.sigmoid(logits) return F.softmax(logits, dim=-1) def clamp_probs(probs): """Clamps the probabilities to be in the open interval `(0, 1)`. The probabilities would be clamped between `eps` and `1 - eps`, and `eps` would be the smallest representable positive number for the input data type. Args: probs (Tensor): A tensor of probabilities. Returns: Tensor: The clamped probabilities. Examples: >>> probs = torch.tensor([0.0, 0.5, 1.0]) >>> clamp_probs(probs) tensor([1.1921e-07, 5.0000e-01, 1.0000e+00]) >>> probs = torch.tensor([0.0, 0.5, 1.0], dtype=torch.float64) >>> clamp_probs(probs) tensor([2.2204e-16, 5.0000e-01, 1.0000e+00], dtype=torch.float64) """ eps = torch.finfo(probs.dtype).eps return probs.clamp(min=eps, max=1 - eps) def probs_to_logits(probs, is_binary=False): r""" Converts a tensor of probabilities into logits. For the binary case, this denotes the probability of occurrence of the event indexed by `1`. For the multi-dimensional case, the values along the last dimension denote the probabilities of occurrence of each of the events. """ ps_clamped = clamp_probs(probs) if is_binary: return torch.log(ps_clamped) - torch.log1p(-ps_clamped) return torch.log(ps_clamped) class lazy_property: r""" Used as a decorator for lazy loading of class attributes. This uses a non-data descriptor that calls the wrapped method to compute the property on first call; thereafter replacing the wrapped method into an instance attribute. """ def __init__(self, wrapped): self.wrapped = wrapped update_wrapper(self, wrapped) def __get__(self, instance, obj_type=None): if instance is None: return _lazy_property_and_property(self.wrapped) with torch.enable_grad(): value = self.wrapped(instance) setattr(instance, self.wrapped.__name__, value) return value class _lazy_property_and_property(lazy_property, property): """We want lazy properties to look like multiple things. * property when Sphinx autodoc looks * lazy_property when Distribution validate_args looks """ def __init__(self, wrapped): property.__init__(self, wrapped) def tril_matrix_to_vec(mat: torch.Tensor, diag: int = 0) -> torch.Tensor: r""" Convert a `D x D` matrix or a batch of matrices into a (batched) vector which comprises of lower triangular elements from the matrix in row order. """ n = mat.shape[-1] if not torch._C._get_tracing_state() and (diag < -n or diag >= n): raise ValueError(f"diag ({diag}) provided is outside [{-n}, {n-1}].") arange = torch.arange(n, device=mat.device) tril_mask = arange < arange.view(-1, 1) + (diag + 1) vec = mat[..., tril_mask] return vec def vec_to_tril_matrix(vec: torch.Tensor, diag: int = 0) -> torch.Tensor: r""" Convert a vector or a batch of vectors into a batched `D x D` lower triangular matrix containing elements from the vector in row order. """ # +ve root of D**2 + (1+2*diag)*D - |diag| * (diag+1) - 2*vec.shape[-1] = 0 n = ( -(1 + 2 * diag) + ((1 + 2 * diag) ** 2 + 8 * vec.shape[-1] + 4 * abs(diag) * (diag + 1)) ** 0.5 ) / 2 eps = torch.finfo(vec.dtype).eps if not torch._C._get_tracing_state() and (round(n) - n > eps): raise ValueError( f"The size of last dimension is {vec.shape[-1]} which cannot be expressed as " + "the lower triangular part of a square D x D matrix." ) n = round(n.item()) if isinstance(n, torch.Tensor) else round(n) mat = vec.new_zeros(vec.shape[:-1] + torch.Size((n, n))) arange = torch.arange(n, device=vec.device) tril_mask = arange < arange.view(-1, 1) + (diag + 1) mat[..., tril_mask] = vec return mat