# mypy: allow-untyped-defs from typing import Any, Dict, Iterable, List, Tuple from torch.utils._pytree import ( _dict_flatten, _dict_flatten_with_keys, _dict_unflatten, _list_flatten, _list_flatten_with_keys, _list_unflatten, Context, register_pytree_node, ) from ._compatibility import compatibility __all__ = ["immutable_list", "immutable_dict"] _help_mutation = """\ If you are attempting to modify the kwargs or args of a torch.fx.Node object, instead create a new copy of it and assign the copy to the node: new_args = ... # copy and mutate args node.args = new_args """ def _no_mutation(self, *args, **kwargs): raise NotImplementedError( f"'{type(self).__name__}' object does not support mutation. {_help_mutation}", ) def _create_immutable_container(base, mutable_functions): container = type("immutable_" + base.__name__, (base,), {}) for attr in mutable_functions: setattr(container, attr, _no_mutation) return container immutable_list = _create_immutable_container( list, ( "__delitem__", "__iadd__", "__imul__", "__setitem__", "append", "clear", "extend", "insert", "pop", "remove", "reverse", "sort", ), ) immutable_list.__reduce__ = lambda self: (immutable_list, (tuple(iter(self)),)) immutable_list.__hash__ = lambda self: hash(tuple(self)) compatibility(is_backward_compatible=True)(immutable_list) immutable_dict = _create_immutable_container( dict, ( "__delitem__", "__ior__", "__setitem__", "clear", "pop", "popitem", "setdefault", "update", ), ) immutable_dict.__reduce__ = lambda self: (immutable_dict, (iter(self.items()),)) immutable_dict.__hash__ = lambda self: hash(tuple(self.items())) compatibility(is_backward_compatible=True)(immutable_dict) # Register immutable collections for PyTree operations def _immutable_dict_flatten(d: Dict[Any, Any]) -> Tuple[List[Any], Context]: return _dict_flatten(d) def _immutable_dict_unflatten( values: Iterable[Any], context: Context, ) -> Dict[Any, Any]: return immutable_dict(_dict_unflatten(values, context)) def _immutable_list_flatten(d: List[Any]) -> Tuple[List[Any], Context]: return _list_flatten(d) def _immutable_list_unflatten( values: Iterable[Any], context: Context, ) -> List[Any]: return immutable_list(_list_unflatten(values, context)) register_pytree_node( immutable_dict, _immutable_dict_flatten, _immutable_dict_unflatten, serialized_type_name="torch.fx.immutable_collections.immutable_dict", flatten_with_keys_fn=_dict_flatten_with_keys, ) register_pytree_node( immutable_list, _immutable_list_flatten, _immutable_list_unflatten, serialized_type_name="torch.fx.immutable_collections.immutable_list", flatten_with_keys_fn=_list_flatten_with_keys, )