# mypy: allow-untyped-defs """Functionality for Python <-> C++ frontend inter-op.""" from torch import nn class OrderedDictWrapper: """A wrapper around a C++ OrderedDict. It dynamically evaluates the OrderedDict getter on a bound C++ module, such that new changes on the C++ side are picked up. Otherwise accessing e.g. ``cpp_module._parameters`` just once would get a frozen copy of the parameters at the time of access. ``torch.nn.Module`` accesses ``_parameters`` et al. via ``self.__dict__`` so using properties does not work. """ def __init__(self, cpp_module, attr): self.cpp_module = cpp_module self.attr = attr @property def cpp_dict(self): return getattr(self.cpp_module, self.attr) # Magic methods cannot be assigned dynamically and bypass ``getattr``, so we # must manually override them. def items(self): return self.cpp_dict.items() def keys(self): return self.cpp_dict.keys() def values(self): return self.cpp_dict.values() def __iter__(self): return self.cpp_dict.__iter__() def __len__(self): return self.cpp_dict.__len__() def __contains__(self, key): return self.cpp_dict.__contains__(key) def __getitem__(self, key): return self.cpp_dict.__getitem__(key) class ModuleWrapper(nn.Module): """A subclass of ``torch.nn.Module`` that wraps a C++ frontend module and delegates all access.""" def __init__(self, cpp_module): # Assign before the super class constructor so ``self.training`` can be # assigned to in the super class constructor. self.cpp_module = cpp_module super().__init__() self._parameters = OrderedDictWrapper(cpp_module, "_parameters") # type: ignore[assignment] self._buffers: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_buffers") # type: ignore[assignment] self._modules: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_modules") # type: ignore[assignment] for attr in dir(cpp_module): # Skip magic methods and the three attributes above. if not attr.startswith("_"): setattr(self, attr, getattr(self.cpp_module, attr)) def _apply(self, fn, recurse=True): for param in self.parameters(): # Tensors stored in modules are graph leaves, and we don't # want to create copy nodes, so we have to unpack the data. param.data = fn(param.data) if param._grad is not None: param._grad.data = fn(param._grad.data) for buf in self.buffers(): buf.data = fn(buf.data) return self # nn.Module defines training as a boolean @property # type: ignore[override] def training(self): return self.cpp_module.training @training.setter def training(self, mode): self.cpp_module.train(mode) def __repr__(self): return self.cpp_module.__repr__()