from typing import ( Any, Callable, Dict, List, Literal, Optional, overload, Sequence, Tuple, Union, ) from torch import Tensor from torch.types import _dtype, _int, _size from .common_types import ( _ratio_any_t, _size_1_t, _size_2_opt_t, _size_2_t, _size_3_opt_t, _size_3_t, _size_any_t, ) # 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys. # It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature # is wide-spread. # from mypy_extensions import TypedDict # GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int}) # GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int}) GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int] GRID_SAMPLE_PADDING_MODES = Dict[str, int] # These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning. # # The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate. # This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence` # type. There is no way to express the expected lengths of these lists in the current Python typing system. # # Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were # deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code # generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system # to encode the type semantics of `_add_docstr`, should that system ever become widespread. def fractional_max_pool2d_with_indices( input: Tensor, kernel_size: _size, output_size: Optional[_size] = ..., output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ..., _random_samples: Optional[Tensor] = ..., ) -> Tuple[Tensor, Tensor]: ... def fractional_max_pool3d_with_indices( input: Tensor, kernel_size: _size, output_size: Optional[_size] = ..., output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ..., _random_samples: Optional[Tensor] = ..., ) -> Tuple[Tensor, Tensor]: ... def max_pool1d_with_indices( input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ..., ) -> Tuple[Tensor, Tensor]: ... def max_pool2d_with_indices( input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ..., ) -> Tuple[Tensor, Tensor]: ... def max_pool3d_with_indices( input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ..., ) -> Tuple[Tensor, Tensor]: ... def max_unpool1d( input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., output_size: Optional[_size] = ..., ) -> Tensor: ... def max_unpool2d( input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., output_size: Optional[_size] = ..., ) -> Tensor: ... def max_unpool3d( input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ..., output_size: Optional[_size] = ..., ) -> Tensor: ... def lp_pool1d( input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ..., ceil_mode: bool = ..., ) -> Tensor: ... def lp_pool2d( input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ..., ceil_mode: bool = ..., ) -> Tensor: ... def lp_pool3d( input: Tensor, norm_type: float, kernel_size: _size_3_t, stride: Union[Optional[_size], Optional[int]] = ..., ceil_mode: bool = ..., ) -> Tensor: ... def adaptive_max_pool1d_with_indices( input: Tensor, output_size: _size, return_indices: bool = ..., ) -> Tuple[Tensor, Tensor]: ... def adaptive_max_pool2d_with_indices( input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ..., ) -> Tuple[Tensor, Tensor]: ... def adaptive_max_pool3d_with_indices( input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ..., ) -> Tuple[Tensor, Tensor]: ... def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ... def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ... def dropout( input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def alpha_dropout( input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def dropout1d( input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def dropout2d( input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def dropout3d( input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def feature_alpha_dropout( input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def threshold( input: Tensor, threshold: float, value: float, inplace: bool = ..., ) -> Tensor: ... def relu(input: Tensor, inplace: bool = ...) -> Tensor: ... def glu(input: Tensor, dim: int = ...) -> Tensor: ... def hardtanh( input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ..., ) -> Tensor: ... def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ... def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ... def selu(input: Tensor, inplace: bool = ...) -> Tensor: ... def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ... def leaky_relu( input: Tensor, negative_slope: float = ..., inplace: bool = ..., ) -> Tensor: ... def rrelu( input: Tensor, lower: float = ..., upper: float = ..., training: bool = ..., inplace: bool = ..., ) -> Tensor: ... def tanhshrink(input: Any): ... def softsign(input: Any): ... def softmin( input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ..., ) -> Tensor: ... def softmax( input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ..., ) -> Tensor: ... def gumbel_softmax( logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ..., ) -> Tensor: ... def log_softmax( input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ..., ) -> Tensor: ... def tanh(input: Any): ... def sigmoid(input: Any) -> Tensor: ... def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ... def silu(input: Tensor, inplace: bool = False) -> Tensor: ... def mish(input: Tensor, inplace: bool = False) -> Tensor: ... def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ... def embedding( input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ..., ) -> Tensor: ... def embedding_bag( input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ..., sparse: bool = ..., per_sample_weights: Optional[Tensor] = ..., include_last_offset: bool = ..., padding_idx: Optional[int] = ..., ) -> Tensor: ... def batch_norm( input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ..., momentum: float = ..., eps: float = ..., ) -> Tensor: ... def instance_norm( input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ..., weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ..., momentum: float = ..., eps: float = ..., ) -> Tensor: ... def layer_norm( input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., eps: float = ..., ) -> Tensor: ... def rms_norm( input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., eps: Optional[float] = ..., ) -> Tensor: ... def group_norm( input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., eps: float = ..., ) -> Tensor: ... def local_response_norm( input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ..., ) -> Tensor: ... def ctc_loss( log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ..., reduction: str = ..., zero_infinity: bool = ..., ) -> Tensor: ... def nll_loss( input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def poisson_nll_loss( input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ..., size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def gaussian_nll_loss( input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ..., eps: Optional[float] = ..., reduction: Optional[str] = ..., ) -> Tensor: ... def kl_div( input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., log_target: bool = ..., ) -> Tensor: ... def cross_entropy( input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ..., label_smoothing: float = ..., ) -> Tensor: ... def binary_cross_entropy( input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def binary_cross_entropy_with_logits( input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., pos_weight: Optional[Tensor] = ..., ) -> Tensor: ... def smooth_l1_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., beta: float = ..., ) -> Tensor: ... def huber_loss( input: Tensor, target: Tensor, reduction: str = ..., delta: float = ..., ) -> Tensor: ... def l1_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def mse_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def margin_ranking_loss( input1: Tensor, input2: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def hinge_embedding_loss( input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def multilabel_margin_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def soft_margin_loss( input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def multilabel_soft_margin_loss( input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def cosine_embedding_loss( input1: Tensor, input2: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def multi_margin_loss( input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def upsample( input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ..., align_corners: Optional[Any] = ..., ): ... def interpolate( input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ..., align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ..., antialias: bool = ..., ): ... def upsample_nearest( input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., ): ... def upsample_bilinear( input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., ): ... def grid_sample( input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ..., align_corners: Optional[Any] = ..., ) -> Tensor: ... def affine_grid( theta: Tensor, size: List[int], align_corners: Optional[Any] = ..., ) -> Tensor: ... def triplet_margin_loss( anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ..., eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ..., reduce: Optional[bool] = ..., reduction: str = ..., ) -> Tensor: ... def triplet_margin_with_distance_loss( anchor: Tensor, positive: Tensor, negative: Tensor, *, distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = ..., margin: float = ..., swap: bool = ..., reduction: str = ..., ) -> Tensor: ... def normalize( input: Tensor, p: float = ..., dim: int = ..., eps: float = ..., out: Optional[Tensor] = ..., ) -> Tensor: ... def assert_int_or_pair( arg: Any, arg_name: Any, message: Any, ) -> None: ... def unfold( input: Tensor, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ..., stride: _size_any_t = ..., ) -> Tensor: ... def fold( input: Tensor, output_size: _size_any_t, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ..., stride: _size_any_t = ..., ) -> Tensor: ... def _canonical_mask( mask: Optional[Tensor], mask_name: str, other_type: Optional[_dtype], other_name: str, target_type: _dtype, check_other: bool = True, ) -> Optional[Tensor]: ... def _none_or_dtype(input: Optional[Tensor]) -> Optional[_dtype]: ... def multi_head_attention_forward( query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Optional[Tensor], in_proj_bias: Optional[Tensor], bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Optional[Tensor], training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, average_attn_weights: bool = True, is_causal: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: ... from .. import conv1d as conv1d from .. import conv2d as conv2d from .. import conv3d as conv3d from .. import conv_transpose1d as conv_transpose1d from .. import conv_transpose2d as conv_transpose2d from .. import conv_transpose3d as conv_transpose3d from .. import conv_tbc as conv_tbc from .. import avg_pool1d as avg_pool1d from .. import adaptive_avg_pool1d as adaptive_avg_pool1d from .. import relu_ as relu_ from .. import selu_ as selu_ from .. import celu_ as celu_ from .. import prelu as prelu from .. import rrelu_ as rrelu_ from .. import hardshrink as hardshrink from .. import bilinear as bilinear from .. import pixel_shuffle as pixel_shuffle from .. import pixel_unshuffle as pixel_unshuffle from .. import channel_shuffle as channel_shuffle from .. import native_channel_shuffle as native_channel_shuffle from .. import pairwise_distance as pairwise_distance from .. import pdist as pdist from .. import cosine_similarity as cosine_similarity from .._C._nn import avg_pool2d as avg_pool2d from .._C._nn import avg_pool3d as avg_pool3d from .._C._nn import hardtanh_ as hardtanh_ from .._C._nn import elu_ as elu_ from .._C._nn import leaky_relu_ as leaky_relu_ from .._C._nn import gelu as gelu from .._C._nn import softplus as softplus from .._C._nn import softshrink as softshrink from .._C._nn import linear as linear from .._C._nn import pad as pad from .._C._nn import one_hot as one_hot from .._C._nn import scaled_dot_product_attention as scaled_dot_product_attention from .._C._nn import log_sigmoid logsigmoid = log_sigmoid @overload def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ... @overload def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ... @overload def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ... @overload def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ... @overload def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ... @overload def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ... @overload def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[False] = False) -> Tensor: ... @overload def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ... @overload def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size], *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ... @overload def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ... @overload def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ... @overload def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ... @overload def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, return_indices: Literal[False] = False, _random_samples: Optional[Tensor] = None) -> Tensor: ... @overload def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]], output_ratio: Optional[_ratio_any_t], return_indices: Literal[True], /, _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ... @overload def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Optional[Union[_int, _size]] = None, output_ratio: Optional[_ratio_any_t] = None, *, return_indices: Literal[True], _random_samples: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ... @overload def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ... @overload def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ... @overload def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ... @overload def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ... @overload def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ... @overload def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ... @overload def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, return_indices: Literal[False] = False) -> Tensor: ... @overload def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]], padding: Union[_int, _size], dilation: Union[_int, _size], ceil_mode: bool, return_indices: Literal[True], /) -> Tuple[Tensor, Tensor]: ... @overload def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: bool = False, *, return_indices: Literal[True]) -> Tuple[Tensor, Tensor]: ...