from .module import Module from .. import functional as F from torch import Tensor __all__ = ['ChannelShuffle'] class ChannelShuffle(Module): r"""Divides and rearranges the channels in a tensor. This operation divides the channels in a tensor of shape :math:`(*, C , H, W)` into g groups as :math:`(*, \frac{C}{g}, g, H, W)` and shuffles them, while retaining the original tensor shape in the final output. Args: groups (int): number of groups to divide channels in. Examples:: >>> channel_shuffle = nn.ChannelShuffle(2) >>> input = torch.arange(1, 17, dtype=torch.float32).view(1, 4, 2, 2) >>> input tensor([[[[ 1., 2.], [ 3., 4.]], [[ 5., 6.], [ 7., 8.]], [[ 9., 10.], [11., 12.]], [[13., 14.], [15., 16.]]]]) >>> output = channel_shuffle(input) >>> output tensor([[[[ 1., 2.], [ 3., 4.]], [[ 9., 10.], [11., 12.]], [[ 5., 6.], [ 7., 8.]], [[13., 14.], [15., 16.]]]]) """ __constants__ = ['groups'] groups: int def __init__(self, groups: int) -> None: super().__init__() self.groups = groups def forward(self, input: Tensor) -> Tensor: return F.channel_shuffle(input, self.groups) def extra_repr(self) -> str: return f'groups={self.groups}'