# mypy: allow-untyped-defs """This file exports ONNX ops for opset 17. Note [ONNX Operators that are added/updated in opset 17] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ https://github.com/onnx/onnx/blob/main/docs/Changelog.md#version-17-of-the-default-onnx-operator-set New operators: BlackmanWindow DFT HammingWindow HannWindow LayerNormalization MelWeightMatrix STFT SequenceMap """ import functools from typing import Optional, Sequence import torch from torch import _C from torch.onnx import _type_utils, errors, symbolic_helper from torch.onnx._internal import _beartype, jit_utils, registration # EDITING THIS FILE? READ THIS FIRST! # see Note [Edit Symbolic Files] in README.md __all__ = ["layer_norm", "stft", "quantized_layer_norm"] _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=17) @_onnx_symbolic("aten::layer_norm") @symbolic_helper.parse_args("v", "is", "v", "v", "f", "none") def layer_norm( g: jit_utils.GraphContext, input: _C.Value, normalized_shape: Sequence[int], weight: _C.Value, bias: _C.Value, eps: float, cudnn_enable: bool, ): # normalized_shape: input shape from an expected input of size # axis: The first normalization dimension. # layer_norm normalizes on the last D dimensions, # where D is the size of normalized_shape axis = -len(normalized_shape) scalar_type = _type_utils.JitScalarType.from_value( input, _type_utils.JitScalarType.FLOAT ) dtype = scalar_type.dtype() if symbolic_helper._is_none(weight): weight_value = torch.ones(normalized_shape, dtype=dtype) weight = g.op("Constant", value_t=weight_value) if symbolic_helper._is_none(bias): bias_value = torch.zeros(normalized_shape, dtype=dtype) bias = g.op("Constant", value_t=bias_value) return g.op( "LayerNormalization", input, weight, bias, epsilon_f=eps, axis_i=axis, ) @_onnx_symbolic("quantized::layer_norm") def quantized_layer_norm( g: jit_utils.GraphContext, x, normalized_shape, weight, bias, eps, op_scale, op_zero_point, ): x, _, _, _ = symbolic_helper.dequantize_helper(g, x) output = layer_norm(g, x, normalized_shape, weight, bias, eps, False) return symbolic_helper.quantize_helper(g, output, op_scale, op_zero_point) def _compute_edge_sizes(n_fft, window_size): """Helper function to compute the sizes of the edges (left and right) of a given window centered within an FFT size.""" left = (n_fft - window_size) // 2 right = n_fft - left - window_size return left, right @_onnx_symbolic("aten::stft") @symbolic_helper.parse_args("v", "i", "i", "i", "v", "b", "b", "b") @_beartype.beartype def stft( g: jit_utils.GraphContext, input: _C.Value, n_fft: int, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: Optional[_C.Value] = None, normalized: bool = False, onesided: Optional[bool] = True, return_complex: Optional[bool] = False, ) -> _C.Value: """Associates `torch.stft` with the `STFT` ONNX operator. Note that torch.stft calls _VF.stft, without centering or padding options. Hence, this function does not contain these two arguments. See torch.stft source code for more info. Args: g: Graph to write the ONNX representation into input: Input tensor for the transformation n_fft: FFT size hop_length: Size of the hop. Defaults to `floot(n_fft // 4)` win_length: Size of the analysis window. Defaults to `n_fft` window: Analysis window. Defaults to a window of all ones normalized: Whether to return a normalized STFT onesided: Whether to return only half (+1) of the results, given the symmetry of the STFT return_complex: Whether to return the complex value (Note: Must be `False` or `None`) Returns: op: Operator for torch.stft associated with STFT (ONNX) """ # Checks if return_complex: raise errors.SymbolicValueError( msg="STFT does not currently support complex types", value=input ) # Get STFT sizes frame_step_value = hop_length if hop_length is not None else n_fft // 4 frame_step_const = g.op( "Constant", value_t=torch.tensor(frame_step_value, dtype=torch.int64) ) frame_length_const = g.op( "Constant", value_t=torch.tensor(n_fft, dtype=torch.int64) ) # Pre-process input if needed signal = input signal_rank = symbolic_helper._get_tensor_rank(signal) if signal_rank == 1: # Add batch dimension signal = g.op( "Unsqueeze", signal, g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)), ) elif signal_rank > 2: raise errors.SymbolicValueError( msg="STFT can only take inputs of 1 [signal] or 2 [batch, signal] dimensions. " f"Current rank of signal is {signal_rank}, please reduce it.", value=input, ) # Get window and make sure it's the same size as `win_length` or `n_fft` n_win = symbolic_helper._get_tensor_dim_size(window, dim=0) if n_win is not None: win_length_default = win_length if win_length else n_fft assert n_win == win_length_default, ( "Analysis window size must equal `win_length` or `n_fft`. " f"Please, set `win_length` or `n_fft` to match `window` size ({n_win})", ) # Center window around zeros if needed (required by ONNX's STFT) if n_win < n_fft: left, right = _compute_edge_sizes(n_fft, n_win) left_win = g.op("Constant", value_t=torch.zeros(left)) right_win = g.op("Constant", value_t=torch.zeros(right)) window = g.op("Concat", left_win, window, right_win, axis_i=0) # Create window, if needed if symbolic_helper._is_none(window): if win_length: if win_length > n_fft: raise errors.SymbolicValueError( msg="The analysis window can't be longer than the size of the FFT. " f"Please set `win_length` ({win_length}) to `n_fft` ({n_fft}) or less.", value=input, ) # Center window, if needed left, right = _compute_edge_sizes(n_fft, win_length) torch_window = torch.hstack( (torch.zeros(left), torch.ones(win_length), torch.zeros(right)) ) else: # Rectangle window torch_window = torch.ones(n_fft) assert torch_window.shape[0] == n_fft window = g.op("Constant", value_t=torch_window) window = g.op( "Cast", window, to_i=_type_utils.JitScalarType.from_value(signal).onnx_type() ) # Run STFT result = g.op( "STFT", signal, frame_step_const, window, frame_length_const, onesided_i=1 if onesided is None or onesided else 0, ) # Transpose to mimic torch.stft's behavior result = g.op("Transpose", result, perm_i=[0, 2, 1, 3]) # Remove batch dimension, if needed if signal_rank == 1: result = g.op( "Squeeze", result, g.op("Constant", value_t=torch.tensor([0], dtype=torch.int64)), ) # Normalize, if needed if normalized: sqrt_nfft = torch.sqrt(torch.tensor(n_fft, dtype=signal.type().dtype())) result = g.op("Div", result, g.op("Constant", value_t=sqrt_nfft)) return result