# mypy: allow-untyped-defs """ Note [ONNX operators that are added/updated from opset 8 to opset 9] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ New operators: Compress ConstantOfShape EyeLike MaxUnpool OneHot Sinh Cosh Asinh Acosh Atanh Shrink IsNaN Sign Erf Scatter Where NonZero TfIdfVectorizer MeanVarianceNormalization Updated operators: BatchNormalization: removed spatial attribute. Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported. Cast: more data types{string} supported. Upsample: moved scales from attribute to input. Scan """ import functools import warnings import torch from torch._C import _onnx as _C_onnx from torch.onnx import _type_utils, errors, symbolic_helper, symbolic_opset9 as opset9 from torch.onnx._internal import jit_utils, registration _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=8) block_listed_operators = ( "nonzero", "where", "scatter", "scatter_add", "erf", "sign", "isnan", "gather", "arange", "masked_fill", "index_fill", "index_copy", "repeat_interleave", "any", "all", ) for block_listed_op in block_listed_operators: _onnx_symbolic(f"aten::{block_listed_op}")( symbolic_helper._block_list_in_opset(block_listed_op) ) @_onnx_symbolic( "aten::upsample_nearest1d", decorate=[symbolic_helper._apply_params("upsample_nearest1d", 3, "nearest")], ) @_onnx_symbolic( "aten::upsample_nearest2d", decorate=[symbolic_helper._apply_params("upsample_nearest2d", 4, "nearest")], ) @_onnx_symbolic( "aten::upsample_nearest3d", decorate=[symbolic_helper._apply_params("upsample_nearest3d", 5, "nearest")], ) @_onnx_symbolic( "aten::upsample_linear1d", decorate=[symbolic_helper._apply_params("upsample_linear1d", 3, "linear")], ) @_onnx_symbolic( "aten::upsample_bilinear2d", decorate=[symbolic_helper._apply_params("upsample_bilinear2d", 4, "linear")], ) @_onnx_symbolic( "aten::upsample_trilinear3d", decorate=[symbolic_helper._apply_params("upsample_trilinear3d", 5, "linear")], ) def _interpolate(name, dim, interpolate_mode): def symbolic_fn(g, input, output_size, *args): scales, align_corners = symbolic_helper._get_interpolate_attributes( g, interpolate_mode, args ) symbolic_helper._interpolate_warning(interpolate_mode) align_corners = symbolic_helper._maybe_get_scalar(align_corners) if align_corners: return symbolic_helper._unimplemented(name, "align_corners == True", input) output_size = symbolic_helper._maybe_get_const(output_size, "is") if symbolic_helper._is_value(output_size): return symbolic_helper._unimplemented( name, "torch._C.Value (output_size) indexing" ) if scales is None: scales = [ 1.0 if i < 2 else float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)]) for i in range(0, dim) ] return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales) return symbolic_fn @_onnx_symbolic("aten::__interpolate") def __interpolate( g: jit_utils.GraphContext, input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias, ): align_corners = symbolic_helper._maybe_get_const(align_corners, "b") if not symbolic_helper._is_none(align_corners) and align_corners: return symbolic_helper._unimplemented("interpolate", "align_corners == True") if not symbolic_helper._is_none(scale_factor) and symbolic_helper._is_value( scale_factor ): return symbolic_helper._unimplemented( "interpolate", "dynamic scales in opset 8" ) if not symbolic_helper._is_none(size) and symbolic_helper._is_value(size): return symbolic_helper._unimplemented("interpolate", "dynamic size in opset 8") scales, mode = symbolic_helper._interpolate_get_scales_and_mode( g, input, size, scale_factor, mode, align_corners ) return g.op("Upsample", input, mode_s=mode, scales_f=scales) # NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation # issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which # is lost after casting. def _try_cast_integer_to_float(g: jit_utils.GraphContext, *args): floating_scalar_types = { _type_utils.JitScalarType.HALF, _type_utils.JitScalarType.FLOAT, _type_utils.JitScalarType.DOUBLE, } old_type = None # Cast the input tensor to Float if its scalarType is known and is not floating number. # If casting is performed, return the old scalarType, otherwise return None. arg0_type = _type_utils.JitScalarType.from_value( args[0], _type_utils.JitScalarType.UNDEFINED ) if arg0_type != _type_utils.JitScalarType.UNDEFINED: old_type = arg0_type if old_type not in floating_scalar_types: old_type = old_type.scalar_name() args = tuple( g.op("Cast", arg, to_i=_C_onnx.TensorProtoDataType.FLOAT) for arg in args ) else: return (None,) + args else: warnings.warn( "Only floating datatype is supported for these operators: " "{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause " "the onnx model to be incorrect, if inputs have integer datatypes." ) return (old_type,) + args def _cast_to_type(g: jit_utils.GraphContext, input, to_type): if to_type is None: return input return getattr(opset9, f"_cast_{to_type}")(g, input, False) def _comparison_operator(g: jit_utils.GraphContext, input, other, op_name): other = symbolic_helper._maybe_get_scalar(other) other = symbolic_helper._if_scalar_type_as(other, input) _, input, other = _try_cast_integer_to_float(g, input, other) return g.op(op_name, input, other) # NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten}, # integer input type not supported in opset8. Cast to float if possible. @_onnx_symbolic("aten::gt") def gt(g: jit_utils.GraphContext, input, other): return _comparison_operator(g, input, other, "Greater") @_onnx_symbolic("aten::lt") def lt(g: jit_utils.GraphContext, input, other): return _comparison_operator(g, input, other, "Less") @_onnx_symbolic("aten::bmm") def bmm(g: jit_utils.GraphContext, self, other): if symbolic_helper._try_get_scalar_type(self): old_type, self, other = _try_cast_integer_to_float(g, self, other) return _cast_to_type(g, g.op("MatMul", self, other), old_type) else: return g.op("MatMul", self, other) @_onnx_symbolic("aten::matmul") def matmul(g: jit_utils.GraphContext, self, other): return bmm(g, self, other) @_onnx_symbolic("aten::prelu") def prelu(g: jit_utils.GraphContext, self, weight): self_rank = symbolic_helper._get_tensor_rank(self) weight_sizes = symbolic_helper._get_tensor_sizes(weight) if self_rank is not None and self_rank > 2: weight = g.op("Unsqueeze", weight, axes_i=list(range(1, self_rank - 1))) elif self_rank == 0 and weight_sizes == [1]: # self and weight are both scalar but weight has rank == 1, squeeze weight. weight = symbolic_helper._squeeze_helper(g, weight, [0]) if symbolic_helper._try_get_scalar_type(self): old_type, self, weight = _try_cast_integer_to_float(g, self, weight) return _cast_to_type(g, g.op("PRelu", self, weight), old_type) else: return g.op("PRelu", self, weight) @_onnx_symbolic("aten::mm") def mm(g: jit_utils.GraphContext, self, other): # Create a dummy C tensor. Only needed for API purposes, the value is # since beta = 0 scalar_type = symbolic_helper._try_get_scalar_type(self, other) if scalar_type is None: raise errors.SymbolicValueError( "mm can only operate on tensors with known types", self ) zero_constant = g.op( "Constant", value_t=torch.tensor([0], dtype=scalar_type.dtype()), ) if symbolic_helper._try_get_scalar_type(self): old_type, self, other, zero_constant = _try_cast_integer_to_float( g, self, other, zero_constant ) return _cast_to_type( g, g.op("Gemm", self, other, zero_constant, beta_f=0.0, alpha_f=1.0), old_type, ) return g.op("Gemm", self, other, zero_constant, beta_f=0.0, alpha_f=1.0) @_onnx_symbolic("aten::addmm") @symbolic_helper.parse_args("v", "v", "v", "t", "t") def addmm(g: jit_utils.GraphContext, self, mat1, mat2, beta, alpha): if symbolic_helper._try_get_scalar_type(self): old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2) return _cast_to_type( g, g.op( "Gemm", mat1, mat2, self, beta_f=symbolic_helper._scalar(beta), alpha_f=symbolic_helper._scalar(alpha), ), old_type, ) else: return g.op( "Gemm", mat1, mat2, self, beta_f=symbolic_helper._scalar(beta), alpha_f=symbolic_helper._scalar(alpha), ) @_onnx_symbolic("aten::flatten") def flatten(g: jit_utils.GraphContext, input, start_dim, end_dim): start_dim_i = symbolic_helper._get_const(start_dim, "i", "start_dim") end_dim_i = symbolic_helper._get_const(end_dim, "i", "end_dim") dim = input.type().dim() if end_dim_i < 0: end_dim_i = dim + end_dim_i # use ONNX's Flatten operator for cases where the output shape is 2D if start_dim_i == 1 and end_dim_i == dim - 1: if symbolic_helper._try_get_scalar_type(input): old_type, input = _try_cast_integer_to_float(g, input) return _cast_to_type( g, g.op("Flatten", input, axis_i=start_dim_i), old_type ) else: return g.op("Flatten", input, axis_i=start_dim_i) if start_dim_i == 0 and end_dim_i == dim - 2: if symbolic_helper._try_get_scalar_type(input): old_type, input = _try_cast_integer_to_float(g, input) return _cast_to_type( g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type ) else: return g.op("Flatten", input, axis_i=end_dim_i + 1) return opset9.flatten(g, input, start_dim, end_dim) def _constant_fill(g: jit_utils.GraphContext, sizes, dtype: int, const_value): if dtype is None: scalar_type = _type_utils.JitScalarType.FLOAT else: scalar_type = _type_utils.JitScalarType(dtype) if not scalar_type.dtype().is_floating_point: result = g.op( "ConstantFill", sizes, dtype_i=_type_utils.JitScalarType.FLOAT.onnx_type(), input_as_shape_i=1, value_f=const_value, ) return g.op("Cast", result, to_i=scalar_type.onnx_type()) else: return g.op( "ConstantFill", sizes, dtype_i=scalar_type.onnx_type(), input_as_shape_i=1, value_f=const_value, ) @_onnx_symbolic("aten::empty") @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") def empty( g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False, memory_format=None, ): return zeros(g, sizes, dtype, layout, device, pin_memory) @_onnx_symbolic("aten::empty_like") @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") def empty_like( g: jit_utils.GraphContext, input, dtype, layout, device, pin_memory=False, memory_format=None, ): return zeros_like(g, input, dtype, layout, device, pin_memory) @_onnx_symbolic("aten::zeros") @symbolic_helper.parse_args("v", "i", "v", "v", "v") def zeros(g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False): # NOTE: no way to set device and layout in ONNX, so we ignore it return _constant_fill(g, sizes, dtype, 0) @_onnx_symbolic("aten::zeros_like") @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") def zeros_like( g: jit_utils.GraphContext, input, dtype, layout, device, pin_memory=False, memory_format=None, ): shape = g.op("Shape", input) return _constant_fill(g, shape, dtype, 0) @_onnx_symbolic("aten::ones") @symbolic_helper.parse_args("v", "i", "v", "v", "v") def ones(g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False): return _constant_fill(g, sizes, dtype, 1) @_onnx_symbolic("aten::ones_like") @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") def ones_like( g: jit_utils.GraphContext, input, dtype, layout, device, pin_memory=False, memory_format=None, ): shape = g.op("Shape", input) return _constant_fill(g, shape, dtype, 1) @_onnx_symbolic("aten::full") def full( g: jit_utils.GraphContext, sizes, value, dtype, layout, device, pin_memory=False ): const_value = symbolic_helper._maybe_get_const(value, "t") if symbolic_helper._is_value(const_value): tmp = zeros(g, sizes, dtype, layout, device) return opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1))) else: dtype = symbolic_helper._get_const(dtype, "i", "dtype") return _constant_fill(g, sizes, dtype, const_value) @_onnx_symbolic("aten::full_like") @symbolic_helper.parse_args("v", "f", "i", "v", "v", "v", "v") def full_like( g: jit_utils.GraphContext, input, fill_value, dtype, layout, device, pin_memory=False, memory_format=None, ): shape = g.op("Shape", input) return _constant_fill(g, shape, dtype, fill_value) @_onnx_symbolic("aten::repeat") def repeat(g: jit_utils.GraphContext, self, repeats): if not symbolic_helper._is_value(repeats): repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) if symbolic_helper._is_packed_list(repeats): repeat_size_len = len(symbolic_helper._unpack_list(repeats)) else: const_repeats = symbolic_helper._maybe_get_const(repeats, "is") repeat_size_len = len(const_repeats) if self.isCompleteTensor(): sizes = self.type().sizes() diff_dims = repeat_size_len - len(sizes) if diff_dims > 0: self = opset9.view( g, self, g.op("Constant", value_t=torch.tensor([1] * diff_dims + sizes)) ) return g.op("Tile", self, repeats)