import math import warnings from collections import OrderedDict from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import nn, Tensor from ...ops import boxes as box_ops, generalized_box_iou_loss, misc as misc_nn_ops, sigmoid_focal_loss from ...ops.feature_pyramid_network import LastLevelP6P7 from ...transforms._presets import ObjectDetection from ...utils import _log_api_usage_once from .._api import register_model, Weights, WeightsEnum from .._meta import _COCO_CATEGORIES from .._utils import _ovewrite_value_param, handle_legacy_interface from ..resnet import resnet50, ResNet50_Weights from . import _utils as det_utils from .anchor_utils import AnchorGenerator from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers from .transform import GeneralizedRCNNTransform __all__ = [ "FCOS", "FCOS_ResNet50_FPN_Weights", "fcos_resnet50_fpn", ] class FCOSHead(nn.Module): """ A regression and classification head for use in FCOS. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_classes (int): number of classes to be predicted num_convs (Optional[int]): number of conv layer of head. Default: 4. """ __annotations__ = { "box_coder": det_utils.BoxLinearCoder, } def __init__(self, in_channels: int, num_anchors: int, num_classes: int, num_convs: Optional[int] = 4) -> None: super().__init__() self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True) self.classification_head = FCOSClassificationHead(in_channels, num_anchors, num_classes, num_convs) self.regression_head = FCOSRegressionHead(in_channels, num_anchors, num_convs) def compute_loss( self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor], matched_idxs: List[Tensor], ) -> Dict[str, Tensor]: cls_logits = head_outputs["cls_logits"] # [N, HWA, C] bbox_regression = head_outputs["bbox_regression"] # [N, HWA, 4] bbox_ctrness = head_outputs["bbox_ctrness"] # [N, HWA, 1] all_gt_classes_targets = [] all_gt_boxes_targets = [] for targets_per_image, matched_idxs_per_image in zip(targets, matched_idxs): if len(targets_per_image["labels"]) == 0: gt_classes_targets = targets_per_image["labels"].new_zeros((len(matched_idxs_per_image),)) gt_boxes_targets = targets_per_image["boxes"].new_zeros((len(matched_idxs_per_image), 4)) else: gt_classes_targets = targets_per_image["labels"][matched_idxs_per_image.clip(min=0)] gt_boxes_targets = targets_per_image["boxes"][matched_idxs_per_image.clip(min=0)] gt_classes_targets[matched_idxs_per_image < 0] = -1 # background all_gt_classes_targets.append(gt_classes_targets) all_gt_boxes_targets.append(gt_boxes_targets) # List[Tensor] to Tensor conversion of `all_gt_boxes_target`, `all_gt_classes_targets` and `anchors` all_gt_boxes_targets, all_gt_classes_targets, anchors = ( torch.stack(all_gt_boxes_targets), torch.stack(all_gt_classes_targets), torch.stack(anchors), ) # compute foregroud foregroud_mask = all_gt_classes_targets >= 0 num_foreground = foregroud_mask.sum().item() # classification loss gt_classes_targets = torch.zeros_like(cls_logits) gt_classes_targets[foregroud_mask, all_gt_classes_targets[foregroud_mask]] = 1.0 loss_cls = sigmoid_focal_loss(cls_logits, gt_classes_targets, reduction="sum") # amp issue: pred_boxes need to convert float pred_boxes = self.box_coder.decode(bbox_regression, anchors) # regression loss: GIoU loss loss_bbox_reg = generalized_box_iou_loss( pred_boxes[foregroud_mask], all_gt_boxes_targets[foregroud_mask], reduction="sum", ) # ctrness loss bbox_reg_targets = self.box_coder.encode(anchors, all_gt_boxes_targets) if len(bbox_reg_targets) == 0: gt_ctrness_targets = bbox_reg_targets.new_zeros(bbox_reg_targets.size()[:-1]) else: left_right = bbox_reg_targets[:, :, [0, 2]] top_bottom = bbox_reg_targets[:, :, [1, 3]] gt_ctrness_targets = torch.sqrt( (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) ) pred_centerness = bbox_ctrness.squeeze(dim=2) loss_bbox_ctrness = nn.functional.binary_cross_entropy_with_logits( pred_centerness[foregroud_mask], gt_ctrness_targets[foregroud_mask], reduction="sum" ) return { "classification": loss_cls / max(1, num_foreground), "bbox_regression": loss_bbox_reg / max(1, num_foreground), "bbox_ctrness": loss_bbox_ctrness / max(1, num_foreground), } def forward(self, x: List[Tensor]) -> Dict[str, Tensor]: cls_logits = self.classification_head(x) bbox_regression, bbox_ctrness = self.regression_head(x) return { "cls_logits": cls_logits, "bbox_regression": bbox_regression, "bbox_ctrness": bbox_ctrness, } class FCOSClassificationHead(nn.Module): """ A classification head for use in FCOS. Args: in_channels (int): number of channels of the input feature. num_anchors (int): number of anchors to be predicted. num_classes (int): number of classes to be predicted. num_convs (Optional[int]): number of conv layer. Default: 4. prior_probability (Optional[float]): probability of prior. Default: 0.01. norm_layer: Module specifying the normalization layer to use. """ def __init__( self, in_channels: int, num_anchors: int, num_classes: int, num_convs: int = 4, prior_probability: float = 0.01, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() self.num_classes = num_classes self.num_anchors = num_anchors if norm_layer is None: norm_layer = partial(nn.GroupNorm, 32) conv = [] for _ in range(num_convs): conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)) conv.append(norm_layer(in_channels)) conv.append(nn.ReLU()) self.conv = nn.Sequential(*conv) for layer in self.conv.children(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) torch.nn.init.constant_(layer.bias, 0) self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1) torch.nn.init.normal_(self.cls_logits.weight, std=0.01) torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability)) def forward(self, x: List[Tensor]) -> Tensor: all_cls_logits = [] for features in x: cls_logits = self.conv(features) cls_logits = self.cls_logits(cls_logits) # Permute classification output from (N, A * K, H, W) to (N, HWA, K). N, _, H, W = cls_logits.shape cls_logits = cls_logits.view(N, -1, self.num_classes, H, W) cls_logits = cls_logits.permute(0, 3, 4, 1, 2) cls_logits = cls_logits.reshape(N, -1, self.num_classes) # Size=(N, HWA, 4) all_cls_logits.append(cls_logits) return torch.cat(all_cls_logits, dim=1) class FCOSRegressionHead(nn.Module): """ A regression head for use in FCOS, which combines regression branch and center-ness branch. This can obtain better performance. Reference: `FCOS: A simple and strong anchor-free object detector `_. Args: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted num_convs (Optional[int]): number of conv layer. Default: 4. norm_layer: Module specifying the normalization layer to use. """ def __init__( self, in_channels: int, num_anchors: int, num_convs: int = 4, norm_layer: Optional[Callable[..., nn.Module]] = None, ): super().__init__() if norm_layer is None: norm_layer = partial(nn.GroupNorm, 32) conv = [] for _ in range(num_convs): conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)) conv.append(norm_layer(in_channels)) conv.append(nn.ReLU()) self.conv = nn.Sequential(*conv) self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1) self.bbox_ctrness = nn.Conv2d(in_channels, num_anchors * 1, kernel_size=3, stride=1, padding=1) for layer in [self.bbox_reg, self.bbox_ctrness]: torch.nn.init.normal_(layer.weight, std=0.01) torch.nn.init.zeros_(layer.bias) for layer in self.conv.children(): if isinstance(layer, nn.Conv2d): torch.nn.init.normal_(layer.weight, std=0.01) torch.nn.init.zeros_(layer.bias) def forward(self, x: List[Tensor]) -> Tuple[Tensor, Tensor]: all_bbox_regression = [] all_bbox_ctrness = [] for features in x: bbox_feature = self.conv(features) bbox_regression = nn.functional.relu(self.bbox_reg(bbox_feature)) bbox_ctrness = self.bbox_ctrness(bbox_feature) # permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4). N, _, H, W = bbox_regression.shape bbox_regression = bbox_regression.view(N, -1, 4, H, W) bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2) bbox_regression = bbox_regression.reshape(N, -1, 4) # Size=(N, HWA, 4) all_bbox_regression.append(bbox_regression) # permute bbox ctrness output from (N, 1 * A, H, W) to (N, HWA, 1). bbox_ctrness = bbox_ctrness.view(N, -1, 1, H, W) bbox_ctrness = bbox_ctrness.permute(0, 3, 4, 1, 2) bbox_ctrness = bbox_ctrness.reshape(N, -1, 1) all_bbox_ctrness.append(bbox_ctrness) return torch.cat(all_bbox_regression, dim=1), torch.cat(all_bbox_ctrness, dim=1) class FCOS(nn.Module): """ Implements FCOS. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification, regression and centerness losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each image - scores (Tensor[N]): the scores for each prediction Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute, which indicates the number of output channels that each feature map has (and it should be the same for all feature maps). The backbone should return a single Tensor or an OrderedDict[Tensor]. num_classes (int): number of output classes of the model (including the background). min_size (int): Images are rescaled before feeding them to the backbone: we attempt to preserve the aspect ratio and scale the shorter edge to ``min_size``. If the resulting longer edge exceeds ``max_size``, then downscale so that the longer edge does not exceed ``max_size``. This may result in the shorter edge beeing lower than ``min_size``. max_size (int): See ``min_size``. image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature maps. For FCOS, only set one anchor for per position of each level, the width and height equal to the stride of feature map, and set aspect ratio = 1.0, so the center of anchor is equivalent to the point in FCOS paper. head (nn.Module): Module run on top of the feature pyramid. Defaults to a module containing a classification and regression module. center_sampling_radius (int): radius of the "center" of a groundtruth box, within which all anchor points are labeled positive. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. topk_candidates (int): Number of best detections to keep before NMS. Example: >>> import torch >>> import torchvision >>> from torchvision.models.detection import FCOS >>> from torchvision.models.detection.anchor_utils import AnchorGenerator >>> # load a pre-trained model for classification and return >>> # only the features >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features >>> # FCOS needs to know the number of >>> # output channels in a backbone. For mobilenet_v2, it's 1280, >>> # so we need to add it here >>> backbone.out_channels = 1280 >>> >>> # let's make the network generate 5 x 3 anchors per spatial >>> # location, with 5 different sizes and 3 different aspect >>> # ratios. We have a Tuple[Tuple[int]] because each feature >>> # map could potentially have different sizes and >>> # aspect ratios >>> anchor_generator = AnchorGenerator( >>> sizes=((8,), (16,), (32,), (64,), (128,)), >>> aspect_ratios=((1.0,),) >>> ) >>> >>> # put the pieces together inside a FCOS model >>> model = FCOS( >>> backbone, >>> num_classes=80, >>> anchor_generator=anchor_generator, >>> ) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) """ __annotations__ = { "box_coder": det_utils.BoxLinearCoder, } def __init__( self, backbone: nn.Module, num_classes: int, # transform parameters min_size: int = 800, max_size: int = 1333, image_mean: Optional[List[float]] = None, image_std: Optional[List[float]] = None, # Anchor parameters anchor_generator: Optional[AnchorGenerator] = None, head: Optional[nn.Module] = None, center_sampling_radius: float = 1.5, score_thresh: float = 0.2, nms_thresh: float = 0.6, detections_per_img: int = 100, topk_candidates: int = 1000, **kwargs, ): super().__init__() _log_api_usage_once(self) if not hasattr(backbone, "out_channels"): raise ValueError( "backbone should contain an attribute out_channels " "specifying the number of output channels (assumed to be the " "same for all the levels)" ) self.backbone = backbone if not isinstance(anchor_generator, (AnchorGenerator, type(None))): raise TypeError( f"anchor_generator should be of type AnchorGenerator or None, instead got {type(anchor_generator)}" ) if anchor_generator is None: anchor_sizes = ((8,), (16,), (32,), (64,), (128,)) # equal to strides of multi-level feature map aspect_ratios = ((1.0,),) * len(anchor_sizes) # set only one anchor anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) self.anchor_generator = anchor_generator if self.anchor_generator.num_anchors_per_location()[0] != 1: raise ValueError( f"anchor_generator.num_anchors_per_location()[0] should be 1 instead of {anchor_generator.num_anchors_per_location()[0]}" ) if head is None: head = FCOSHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes) self.head = head self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs) self.center_sampling_radius = center_sampling_radius self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.topk_candidates = topk_candidates # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs( self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]] ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: if self.training: return losses return detections def compute_loss( self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor], num_anchors_per_level: List[int], ) -> Dict[str, Tensor]: matched_idxs = [] for anchors_per_image, targets_per_image in zip(anchors, targets): if targets_per_image["boxes"].numel() == 0: matched_idxs.append( torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device) ) continue gt_boxes = targets_per_image["boxes"] gt_centers = (gt_boxes[:, :2] + gt_boxes[:, 2:]) / 2 # Nx2 anchor_centers = (anchors_per_image[:, :2] + anchors_per_image[:, 2:]) / 2 # N anchor_sizes = anchors_per_image[:, 2] - anchors_per_image[:, 0] # center sampling: anchor point must be close enough to gt center. pairwise_match = (anchor_centers[:, None, :] - gt_centers[None, :, :]).abs_().max( dim=2 ).values < self.center_sampling_radius * anchor_sizes[:, None] # compute pairwise distance between N points and M boxes x, y = anchor_centers.unsqueeze(dim=2).unbind(dim=1) # (N, 1) x0, y0, x1, y1 = gt_boxes.unsqueeze(dim=0).unbind(dim=2) # (1, M) pairwise_dist = torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) # (N, M) # anchor point must be inside gt pairwise_match &= pairwise_dist.min(dim=2).values > 0 # each anchor is only responsible for certain scale range. lower_bound = anchor_sizes * 4 lower_bound[: num_anchors_per_level[0]] = 0 upper_bound = anchor_sizes * 8 upper_bound[-num_anchors_per_level[-1] :] = float("inf") pairwise_dist = pairwise_dist.max(dim=2).values pairwise_match &= (pairwise_dist > lower_bound[:, None]) & (pairwise_dist < upper_bound[:, None]) # match the GT box with minimum area, if there are multiple GT matches gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1]) # N pairwise_match = pairwise_match.to(torch.float32) * (1e8 - gt_areas[None, :]) min_values, matched_idx = pairwise_match.max(dim=1) # R, per-anchor match matched_idx[min_values < 1e-5] = -1 # unmatched anchors are assigned -1 matched_idxs.append(matched_idx) return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs) def postprocess_detections( self, head_outputs: Dict[str, List[Tensor]], anchors: List[List[Tensor]], image_shapes: List[Tuple[int, int]] ) -> List[Dict[str, Tensor]]: class_logits = head_outputs["cls_logits"] box_regression = head_outputs["bbox_regression"] box_ctrness = head_outputs["bbox_ctrness"] num_images = len(image_shapes) detections: List[Dict[str, Tensor]] = [] for index in range(num_images): box_regression_per_image = [br[index] for br in box_regression] logits_per_image = [cl[index] for cl in class_logits] box_ctrness_per_image = [bc[index] for bc in box_ctrness] anchors_per_image, image_shape = anchors[index], image_shapes[index] image_boxes = [] image_scores = [] image_labels = [] for box_regression_per_level, logits_per_level, box_ctrness_per_level, anchors_per_level in zip( box_regression_per_image, logits_per_image, box_ctrness_per_image, anchors_per_image ): num_classes = logits_per_level.shape[-1] # remove low scoring boxes scores_per_level = torch.sqrt( torch.sigmoid(logits_per_level) * torch.sigmoid(box_ctrness_per_level) ).flatten() keep_idxs = scores_per_level > self.score_thresh scores_per_level = scores_per_level[keep_idxs] topk_idxs = torch.where(keep_idxs)[0] # keep only topk scoring predictions num_topk = det_utils._topk_min(topk_idxs, self.topk_candidates, 0) scores_per_level, idxs = scores_per_level.topk(num_topk) topk_idxs = topk_idxs[idxs] anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode="floor") labels_per_level = topk_idxs % num_classes boxes_per_level = self.box_coder.decode( box_regression_per_level[anchor_idxs], anchors_per_level[anchor_idxs] ) boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape) image_boxes.append(boxes_per_level) image_scores.append(scores_per_level) image_labels.append(labels_per_level) image_boxes = torch.cat(image_boxes, dim=0) image_scores = torch.cat(image_scores, dim=0) image_labels = torch.cat(image_labels, dim=0) # non-maximum suppression keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh) keep = keep[: self.detections_per_img] detections.append( { "boxes": image_boxes[keep], "scores": image_scores[keep], "labels": image_labels[keep], } ) return detections def forward( self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None, ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: """ Args: images (list[Tensor]): images to be processed targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: for target in targets: boxes = target["boxes"] torch._assert(isinstance(boxes, torch.Tensor), "Expected target boxes to be of type Tensor.") torch._assert( len(boxes.shape) == 2 and boxes.shape[-1] == 4, f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.", ) original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] torch._assert( len(val) == 2, f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}", ) original_image_sizes.append((val[0], val[1])) # transform the input images, targets = self.transform(images, targets) # Check for degenerate boxes if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): # print the first degenerate box bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() torch._assert( False, f"All bounding boxes should have positive height and width. Found invalid box {degen_bb} for target at index {target_idx}.", ) # get the features from the backbone features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([("0", features)]) features = list(features.values()) # compute the fcos heads outputs using the features head_outputs = self.head(features) # create the set of anchors anchors = self.anchor_generator(images, features) # recover level sizes num_anchors_per_level = [x.size(2) * x.size(3) for x in features] losses = {} detections: List[Dict[str, Tensor]] = [] if self.training: if targets is None: torch._assert(False, "targets should not be none when in training mode") else: # compute the losses losses = self.compute_loss(targets, head_outputs, anchors, num_anchors_per_level) else: # split outputs per level split_head_outputs: Dict[str, List[Tensor]] = {} for k in head_outputs: split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1)) split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors] # compute the detections detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("FCOS always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections return self.eager_outputs(losses, detections) class FCOS_ResNet50_FPN_Weights(WeightsEnum): COCO_V1 = Weights( url="https://download.pytorch.org/models/fcos_resnet50_fpn_coco-99b0c9b7.pth", transforms=ObjectDetection, meta={ "num_params": 32269600, "categories": _COCO_CATEGORIES, "min_size": (1, 1), "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#fcos-resnet-50-fpn", "_metrics": { "COCO-val2017": { "box_map": 39.2, } }, "_ops": 128.207, "_file_size": 123.608, "_docs": """These weights were produced by following a similar training recipe as on the paper.""", }, ) DEFAULT = COCO_V1 @register_model() @handle_legacy_interface( weights=("pretrained", FCOS_ResNet50_FPN_Weights.COCO_V1), weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1), ) def fcos_resnet50_fpn( *, weights: Optional[FCOS_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any, ) -> FCOS: """ Constructs a FCOS model with a ResNet-50-FPN backbone. .. betastatus:: detection module Reference: `FCOS: Fully Convolutional One-Stage Object Detection `_. `FCOS: A simple and strong anchor-free object detector `_. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending on if it is in training or evaluation mode. During training, the model expects both the input tensors and targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Example: >>> model = torchvision.models.detection.fcos_resnet50_fpn(weights=FCOS_ResNet50_FPN_Weights.DEFAULT) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: weights (:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr num_classes (int, optional): number of output classes of the model (including the background) weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for the backbone. trainable_backbone_layers (int, optional): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3. Default: None **kwargs: parameters passed to the ``torchvision.models.detection.FCOS`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.detection.FCOS_ResNet50_FPN_Weights :members: """ weights = FCOS_ResNet50_FPN_Weights.verify(weights) weights_backbone = ResNet50_Weights.verify(weights_backbone) if weights is not None: weights_backbone = None num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"])) elif num_classes is None: num_classes = 91 is_trained = weights is not None or weights_backbone is not None trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor( backbone, trainable_backbone_layers, returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(256, 256) ) model = FCOS(backbone, num_classes, **kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model