/* $Id$ Part of CLP(Q) (Constraint Logic Programming over Rationals) Author: Leslie De Koninck E-mail: Leslie.DeKoninck@cs.kuleuven.be WWW: http://www.swi-prolog.org http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09 Copyright (C): 2006, K.U. Leuven and 1992-1995, Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria This software is based on CLP(Q,R) by Christian Holzbaur for SICStus Prolog and distributed under the license details below with permission from all mentioned authors. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(ineq_q, [ ineq/4, ineq_one/4, ineq_one_n_n_0/1, ineq_one_n_p_0/1, ineq_one_s_n_0/1, ineq_one_s_p_0/1 ]). :- use_module(bv_q, [ backsubst/3, backsubst_delta/4, basis_add/2, dec_step/2, deref/2, determine_active_dec/1, determine_active_inc/1, export_binding/1, get_or_add_class/2, inc_step/2, lb/3, pivot_a/4, rcbl_status/6, reconsider/1, same_class/2, solve/1, ub/3, unconstrained/4, var_intern/3, var_with_def_intern/4 ]). :- use_module(store_q, [ add_linear_11/3, add_linear_ff/5, normalize_scalar/2 ]). % ineq(H,I,Nf,Strictness) % % Solves the inequality Nf < 0 or Nf =< 0 where Nf is in normal form % and H and I are the homogene and inhomogene parts of Nf. ineq([],I,_,Strictness) :- ineq_ground(Strictness,I). ineq([v(K,[X^1])|Tail],I,Lin,Strictness) :- ineq_cases(Tail,I,Lin,Strictness,X,K). ineq_cases([],I,_,Strictness,X,K) :- % K*X + I < 0 or K*X + I =< 0 ineq_one(Strictness,X,K,I). ineq_cases([_|_],_,Lin,Strictness,_,_) :- deref(Lin,Lind), % Id+Hd =< 0 Lind = [Inhom,_|Hom], ineq_more(Hom,Inhom,Lind,Strictness). % ineq_ground(Strictness,I) % % Checks whether a grounded inequality I < 0 or I =< 0 is satisfied. ineq_ground(strict,I) :- I < 0. ineq_ground(nonstrict,I) :- I =< 0. % ineq_one(Strictness,X,K,I) % % Solves the inequality K*X + I < 0 or K*X + I =< 0 ineq_one(strict,X,K,I) :- ( K > 0 -> ( I =:= 0 -> ineq_one_s_p_0(X) % K*X < 0, K > 0 => X < 0 ; Inhom is I rdiv K, ineq_one_s_p_i(X,Inhom) % K*X + I < 0, K > 0 => X + I/K < 0 ) ; ( I =:= 0 -> ineq_one_s_n_0(X) % K*X < 0, K < 0 => -X < 0 ; Inhom is -I rdiv K, ineq_one_s_n_i(X,Inhom) % K*X + I < 0, K < 0 => -X - I/K < 0 ) ). ineq_one(nonstrict,X,K,I) :- ( K > 0 -> ( I =:= 0 -> ineq_one_n_p_0(X) % K*X =< 0, K > 0 => X =< 0 ; Inhom is I rdiv K, ineq_one_n_p_i(X,Inhom) % K*X + I =< 0, K > 0 => X + I/K =< 0 ) ; ( I =:= 0 -> ineq_one_n_n_0(X) % K*X =< 0, K < 0 => -X =< 0 ; Inhom is -I rdiv K, ineq_one_n_n_i(X,Inhom) % K*X + I =< 0, K < 0 => -X - I/K =< 0 ) ). % --------------------------- strict ---------------------------- % ineq_one_s_p_0(X) % % Solves the inequality X < 0 ineq_one_s_p_0(X) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, % old variable, this is deref ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_s_p_0(OrdX,X,Ix) ). ineq_one_s_p_0(X) :- % new variable, nothing depends on it var_intern(t_u(0),X,1). % put a strict inactive upperbound on the variable % ineq_one_s_n_0(X) % % Solves the inequality X > 0 ineq_one_s_n_0(X) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_s_n_0(OrdX,X,Ix) ). ineq_one_s_n_0(X) :- var_intern(t_l(0),X,2). % puts a strict inactive lowerbound on the variable % ineq_one_s_p_i(X,I) % % Solves the inequality X < -I ineq_one_s_p_i(X,I) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_s_p_i(OrdX,I,X,Ix) ). ineq_one_s_p_i(X,I) :- Bound is -I, var_intern(t_u(Bound),X,1). % puts a strict inactive upperbound on the variable % ineq_one_s_n_i(X,I) % % Solves the inequality X > I ineq_one_s_n_i(X,I) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_s_n_i(OrdX,I,X,Ix) ). ineq_one_s_n_i(X,I) :- var_intern(t_l(I),X,2). % puts a strict inactive lowerbound on the variable % ineq_one_old_s_p_0(Hom,X,Inhom) % % Solves the inequality X < 0 where X has linear equation Hom + Inhom ineq_one_old_s_p_0([],_,Ix) :- Ix < 0. % X = I: Ix < 0 ineq_one_old_s_p_0([l(Y*Ky,_)|Tail],X,Ix) :- ( Tail = [] % X = K*Y + I -> Bound is -Ix rdiv Ky, update_indep(strict,Y,Ky,Bound) % X < 0, X = K*Y + I => Y < -I/K or Y > -I/K (depending on K) ; Tail = [_|_] -> get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udus(Type,X,Lin,0,Old) % update strict upperbound ). % ineq_one_old_s_p_0(Hom,X,Inhom) % % Solves the inequality X > 0 where X has linear equation Hom + Inhom ineq_one_old_s_n_0([],_,Ix) :- Ix > 0. % X = I: Ix > 0 ineq_one_old_s_n_0([l(Y*Ky,_)|Tail], X, Ix) :- ( Tail = [] % X = K*Y + I -> Coeff is -Ky, Bound is Ix rdiv Coeff, update_indep(strict,Y,Coeff,Bound) ; Tail = [_|_] -> get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udls(Type,X,Lin,0,Old) % update strict lowerbound ). % ineq_one_old_s_p_i(Hom,C,X,Inhom) % % Solves the inequality X + C < 0 where X has linear equation Hom + Inhom ineq_one_old_s_p_i([],I,_,Ix) :- I + Ix < 0. % X = I ineq_one_old_s_p_i([l(Y*Ky,_)|Tail],I,X,Ix) :- ( Tail = [] % X = K*Y + I -> Bound is -(Ix + I) rdiv Ky, update_indep(strict,Y,Ky,Bound) ; Tail = [_|_] -> Bound is -I, get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udus(Type,X,Lin,Bound,Old) % update strict upperbound ). % ineq_one_old_s_n_i(Hom,C,X,Inhom) % % Solves the inequality X - C > 0 where X has linear equation Hom + Inhom ineq_one_old_s_n_i([],I,_,Ix) :- I - Ix < 0. % X = I ineq_one_old_s_n_i([l(Y*Ky,_)|Tail],I,X,Ix) :- ( Tail = [] % X = K*Y + I -> Coeff is -Ky, Bound is (Ix - I) rdiv Coeff, update_indep(strict,Y,Coeff,Bound) ; Tail = [_|_] -> get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udls(Type,X,Lin,I,Old) % update strict lowerbound ). % -------------------------- nonstrict -------------------------- % ineq_one_n_p_0(X) % % Solves the inequality X =< 0 ineq_one_n_p_0(X) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, % old variable, this is deref ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_n_p_0(OrdX,X,Ix) ). ineq_one_n_p_0(X) :- % new variable, nothing depends on it var_intern(t_u(0),X,0). % nonstrict upperbound % ineq_one_n_n_0(X) % % Solves the inequality X >= 0 ineq_one_n_n_0(X) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_n_n_0(OrdX,X,Ix) ). ineq_one_n_n_0(X) :- var_intern(t_l(0),X,0). % nonstrict lowerbound % ineq_one_n_p_i(X,I) % % Solves the inequality X =< -I ineq_one_n_p_i(X,I) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_n_p_i(OrdX,I,X,Ix) ). ineq_one_n_p_i(X,I) :- Bound is -I, var_intern(t_u(Bound),X,0). % nonstrict upperbound % ineq_one_n_n_i(X,I) % % Solves the inequality X >= I ineq_one_n_n_i(X,I) :- get_attr(X,clpqr_itf,Att), arg(4,Att,lin([Ix,_|OrdX])), !, ( \+ arg(1,Att,clpq) -> throw(error(permission_error('mix CLP(Q) variables with', 'CLP(R) variables:',X),context(_))) ; ineq_one_old_n_n_i(OrdX,I,X,Ix) ). ineq_one_n_n_i(X,I) :- var_intern(t_l(I),X,0). % nonstrict lowerbound % ineq_one_old_n_p_0(Hom,X,Inhom) % % Solves the inequality X =< 0 where X has linear equation Hom + Inhom ineq_one_old_n_p_0([],_,Ix) :- Ix =< 0. % X =I ineq_one_old_n_p_0([l(Y*Ky,_)|Tail],X,Ix) :- ( Tail = [] % X = K*Y + I -> Bound is -Ix rdiv Ky, update_indep(nonstrict,Y,Ky,Bound) ; Tail = [_|_] -> get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udu(Type,X,Lin,0,Old) % update nonstrict upperbound ). % ineq_one_old_n_n_0(Hom,X,Inhom) % % Solves the inequality X >= 0 where X has linear equation Hom + Inhom ineq_one_old_n_n_0([],_,Ix) :- Ix >= 0. % X = I ineq_one_old_n_n_0([l(Y*Ky,_)|Tail], X, Ix) :- ( Tail = [] % X = K*Y + I -> Coeff is -Ky, Bound is Ix rdiv Coeff, update_indep(nonstrict,Y,Coeff,Bound) ; Tail = [_|_] -> get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udl(Type,X,Lin,0,Old) % update nonstrict lowerbound ). % ineq_one_old_n_p_i(Hom,C,X,Inhom) % % Solves the inequality X + C =< 0 where X has linear equation Hom + Inhom ineq_one_old_n_p_i([],I,_,Ix) :- I + Ix =< 0. % X = I ineq_one_old_n_p_i([l(Y*Ky,_)|Tail],I,X,Ix) :- ( Tail = [] % X = K*Y + I -> Bound is -(Ix + I) rdiv Ky, update_indep(nonstrict,Y,Ky,Bound) ; Tail = [_|_] -> Bound is -I, get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udu(Type,X,Lin,Bound,Old) % update nonstrict upperbound ). % ineq_one_old_n_n_i(Hom,C,X,Inhom) % % Solves the inequality X - C >= 0 where X has linear equation Hom + Inhom ineq_one_old_n_n_i([],I,_,Ix) :- I - Ix =< 0. % X = I ineq_one_old_n_n_i([l(Y*Ky,_)|Tail],I,X,Ix) :- ( Tail = [] -> Coeff is -Ky, Bound is (Ix - I) rdiv Coeff, update_indep(nonstrict,Y,Coeff,Bound) ; Tail = [_|_] -> get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), udl(Type,X,Lin,I,Old) ). % --------------------------------------------------------------- % ineq_more(Hom,Inhom,Lin,Strictness) % % Solves the inequality Lin < 0 or Lin =< 0 with Lin = Hom + Inhom ineq_more([],I,_,Strictness) :- ineq_ground(Strictness,I). % I < 0 or I =< 0 ineq_more([l(X*K,_)|Tail],Id,Lind,Strictness) :- ( Tail = [] -> % X*K < Id or X*K =< Id % one var: update bound instead of slack introduction get_or_add_class(X,_), % makes sure X belongs to a class Bound is -Id rdiv K, update_indep(Strictness,X,K,Bound) % new bound ; Tail = [_|_] -> ineq_more(Strictness,Lind) ). % ineq_more(Strictness,Lin) % % Solves the inequality Lin < 0 or Lin =< 0 ineq_more(strict,Lind) :- ( unconstrained(Lind,U,K,Rest) -> % never fails, no implied value % Lind < 0 => Rest < -K*U where U has no bounds var_intern(t_l(0),S,2), % create slack variable S get_attr(S,clpqr_itf,AttS), arg(5,AttS,order(OrdS)), Ki is -1 rdiv K, add_linear_ff(Rest,Ki,[0,0,l(S*1,OrdS)],Ki,LinU), % U = (-1/K)*Rest + (-1/K)*S LinU = [_,_|Hu], get_or_add_class(U,Class), same_class(Hu,Class), % put all variables of new lin. eq. of U in the same class get_attr(U,clpqr_itf,AttU), arg(5,AttU,order(OrdU)), arg(6,AttU,class(ClassU)), backsubst(ClassU,OrdU,LinU) % substitute U by new lin. eq. everywhere in the class ; var_with_def_intern(t_u(0),S,Lind,1), % Lind < 0 => Lind = S with S < 0 basis_add(S,_), % adds S to the basis determine_active_dec(Lind), % activate bounds reconsider(S) % reconsider basis ). ineq_more(nonstrict,Lind) :- ( unconstrained(Lind,U,K,Rest) -> % never fails, no implied value % Lind =< 0 => Rest =< -K*U where U has no bounds var_intern(t_l(0),S,0), % create slack variable S Ki is -1 rdiv K, get_attr(S,clpqr_itf,AttS), arg(5,AttS,order(OrdS)), add_linear_ff(Rest,Ki,[0,0,l(S*1,OrdS)],Ki,LinU), % U = (-1K)*Rest + (-1/K)*S LinU = [_,_|Hu], get_or_add_class(U,Class), same_class(Hu,Class), % put all variables of new lin. eq of U in the same class get_attr(U,clpqr_itf,AttU), arg(5,AttU,order(OrdU)), arg(6,AttU,class(ClassU)), backsubst(ClassU,OrdU,LinU) % substitute U by new lin. eq. everywhere in the class ; % all variables are constrained var_with_def_intern(t_u(0),S,Lind,0), % Lind =< 0 => Lind = S with S =< 0 basis_add(S,_), % adds S to the basis determine_active_dec(Lind), reconsider(S) ). % update_indep(Strictness,X,K,Bound) % % Updates the bound of independent variable X where X < Bound or X =< Bound % or X > Bound or X >= Bound, depending on Strictness and K. update_indep(strict,X,K,Bound) :- get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), ( K < 0 -> uils(Type,X,Lin,Bound,Old) % update independent lowerbound strict ; uius(Type,X,Lin,Bound,Old) % update independent upperbound strict ). update_indep(nonstrict,X,K,Bound) :- get_attr(X,clpqr_itf,Att), arg(2,Att,type(Type)), arg(3,Att,strictness(Old)), arg(4,Att,lin(Lin)), ( K < 0 -> uil(Type,X,Lin,Bound,Old) % update independent lowerbound nonstrict ; uiu(Type,X,Lin,Bound,Old) % update independent upperbound nonstrict ). % --------------------------------------------------------------------------------------- % % Update a bound on a var xi % % a) independent variable % % a1) update inactive bound: done % % a2) update active bound: % Determine [lu]b including most constraining row R % If we are within: done % else pivot(R,xi) and introduce bound via (b) % % a3) introduce a bound on an unconstrained var: % All vars that depend on xi are unconstrained (invariant) -> % the bound cannot invalidate any Lhs % % b) dependent variable % % repair upper or lower (maybe just swap with an unconstrained var from Rhs) % % % Sign = 1,0,-1 means inside,at,outside % % Read following predicates as update (dependent/independent) (lowerbound/upperbound) (strict) % udl(Type,X,Lin,Bound,Strict) % % Updates lower bound of dependent variable X with linear equation % Lin that had type Type and strictness Strict, to the new non-strict % bound Bound. udl(t_none,X,Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,AttX), arg(5,AttX,order(Ord)), setarg(2,AttX,type(t_l(Bound))), setarg(3,AttX,strictness(0)), ( unconstrained(Lin,Uc,Kuc,Rest) -> Ki is -1 rdiv Kuc, add_linear_ff(Rest,Ki,[0,0,l(X* -1,Ord)],Ki,LinU), get_attr(Uc,clpqr_itf,AttU), arg(5,AttU,order(OrdU)), arg(6,AttU,class(Class)), backsubst(Class,OrdU,LinU) ; basis_add(X,_), determine_active_inc(Lin), reconsider(X) ). udl(t_l(L),X,Lin,Bound,Sold) :- ( Bound > L -> Strict is Sold /\ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_l(Bound))), setarg(3,Att,strictness(Strict)), reconsider_lower(X,Lin,Bound) ; true ). udl(t_u(U),X,Lin,Bound,_Sold) :- ( Bound < U -> get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), reconsider_lower(X,Lin,Bound) % makes sure that Lin still satisfies lowerbound Bound ; Bound =:= U, solve_bound(Lin,Bound) % new bound is equal to upperbound: solve ). udl(t_lu(L,U),X,Lin,Bound,Sold) :- ( Bound > L -> ( Bound < U -> Strict is Sold /\ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), setarg(3,Att,strictness(Strict)), reconsider_lower(X,Lin,Bound) ; Bound =:= U, Sold /\ 1 =:= 0, solve_bound(Lin,Bound) ) ; true ). % udls(Type,X,Lin,Bound,Strict) % % Updates lower bound of dependent variable X with linear equation % Lin that had type Type and strictness Strict, to the new strict % bound Bound. udls(t_none,X,Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,AttX), arg(5,AttX,order(Ord)), setarg(2,AttX,type(t_l(Bound))), setarg(3,AttX,strictness(2)), ( unconstrained(Lin,Uc,Kuc,Rest) -> % X = Lin => U = -1/K*Rest + 1/K*X with U an unconstrained variable Ki is -1 rdiv Kuc, add_linear_ff(Rest,Ki,[0,0,l(X* -1,Ord)],Ki,LinU), get_attr(Uc,clpqr_itf,AttU), arg(5,AttU,order(OrdU)), arg(6,AttU,class(Class)), backsubst(Class,OrdU,LinU) ; % no unconstrained variables: add X to basis and reconsider basis basis_add(X,_), determine_active_inc(Lin), reconsider(X) ). udls(t_l(L),X,Lin,Bound,Sold) :- ( Bound < L -> true ; Bound > L -> Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_l(Bound))), setarg(3,Att,strictness(Strict)), reconsider_lower(X,Lin,Bound) ; % equal to lowerbound: check strictness Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). udls(t_u(U),X,Lin,Bound,Sold) :- Bound < U, % smaller than upperbound: set new bound Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), setarg(3,Att,strictness(Strict)), reconsider_lower(X,Lin,Bound). udls(t_lu(L,U),X,Lin,Bound,Sold) :- ( Bound < L -> true % smaller than lowerbound: keep ; Bound > L -> % larger than lowerbound: check upperbound and possibly use new and reconsider basis Bound < U, Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), setarg(3,Att,strictness(Strict)), reconsider_lower(X,Lin,Bound) ; % equal to lowerbound: put new strictness Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). % udu(Type,X,Lin,Bound,Strict) % % Updates upper bound of dependent variable X with linear equation % Lin that had type Type and strictness Strict, to the new non-strict % bound Bound. udu(t_none,X,Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,AttX), arg(5,AttX,order(Ord)), setarg(2,AttX,type(t_u(Bound))), setarg(3,AttX,strictness(0)), ( unconstrained(Lin,Uc,Kuc,Rest) -> % X = Lin => U = -1/K*Rest + 1/K*X with U an unconstrained variable Ki is -1 rdiv Kuc, add_linear_ff(Rest,Ki,[0,0,l(X* -1,Ord)],Ki,LinU), get_attr(Uc,clpqr_itf,AttU), arg(5,AttU,order(OrdU)), arg(6,AttU,class(Class)), backsubst(Class,OrdU,LinU) ; % no unconstrained variables: add X to basis and reconsider basis basis_add(X,_), determine_active_dec(Lin), % try to lower R reconsider(X) ). udu(t_u(U),X,Lin,Bound,Sold) :- ( Bound < U -> Strict is Sold /\ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_u(Bound))), setarg(3,Att,strictness(Strict)), reconsider_upper(X,Lin,Bound) ; true ). udu(t_l(L),X,Lin,Bound,_Sold) :- ( Bound > L -> get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), reconsider_upper(X,Lin,Bound) ; Bound =:= L, solve_bound(Lin,Bound) % equal to lowerbound: solve ). udu(t_lu(L,U),X,Lin,Bound,Sold) :- ( Bound < U -> ( Bound > L -> Strict is Sold /\ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), setarg(3,Att,strictness(Strict)), reconsider_upper(X,Lin,Bound) ; Bound =:= L, Sold /\ 2 =:= 0, solve_bound(Lin,Bound) ) ; true ). % udus(Type,X,Lin,Bound,Strict) % % Updates upper bound of dependent variable X with linear equation % Lin that had type Type and strictness Strict, to the new strict % bound Bound. udus(t_none,X,Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,AttX), arg(5,AttX,order(Ord)), setarg(2,AttX,type(t_u(Bound))), setarg(3,AttX,strictness(1)), ( unconstrained(Lin,Uc,Kuc,Rest) -> % X = Lin => U = -1/K*Rest + 1/K*X with U an unconstrained variable Ki is -1 rdiv Kuc, add_linear_ff(Rest,Ki,[0,0,l(X* -1,Ord)],Ki,LinU), get_attr(Uc,clpqr_itf,AttU), arg(5,AttU,order(OrdU)), arg(6,AttU,class(Class)), backsubst(Class,OrdU,LinU) ; % no unconstrained variables: add X to basis and reconsider basis basis_add(X,_), determine_active_dec(Lin), reconsider(X) ). udus(t_u(U),X,Lin,Bound,Sold) :- ( U < Bound -> true % larger than upperbound: keep ; Bound < U -> % smaller than upperbound: update bound and reconsider basis Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_u(Bound))), setarg(3,Att,strictness(Strict)), reconsider_upper(X,Lin,Bound) ; % equal to upperbound: set new strictness Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). udus(t_l(L),X,Lin,Bound,Sold) :- L < Bound, % larger than lowerbound: update and reconsider basis Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), setarg(3,Att,strictness(Strict)), reconsider_upper(X,Lin,Bound). udus(t_lu(L,U),X,Lin,Bound,Sold) :- ( U < Bound -> true % larger than upperbound: keep ; Bound < U -> % smaller than upperbound: check lowerbound, possibly update and reconsider basis L < Bound, Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), setarg(3,Att,strictness(Strict)), reconsider_upper(X,Lin,Bound) ; % equal to upperbound: update strictness Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). % uiu(Type,X,Lin,Bound,Strict) % % Updates upper bound of independent variable X with linear equation % Lin that had type Type and strictness Strict, to the new non-strict % bound Bound. uiu(t_none,X,_Lin,Bound,_) :- % X had no bounds get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_u(Bound))), setarg(3,Att,strictness(0)). uiu(t_u(U),X,_Lin,Bound,Sold) :- ( U < Bound -> true % larger than upperbound: keep ; Bound < U -> % smaller than upperbound: update. Strict is Sold /\ 2, % update strictness: strictness of lowerbound is kept, % strictness of upperbound is set to non-strict get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_u(Bound))), setarg(3,Att,strictness(Strict)) ; true % equal to upperbound and nonstrict: keep ). uiu(t_l(L),X,Lin,Bound,_Sold) :- ( Bound > L -> % Upperbound is larger than lowerbound: store new bound get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))) ; Bound =:= L, solve_bound(Lin,Bound) % Lowerbound was equal to new upperbound: solve ). uiu(t_L(L),X,Lin,Bound,_Sold) :- ( Bound > L -> get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_Lu(L,Bound))) ; Bound =:= L, solve_bound(Lin,Bound) ). uiu(t_lu(L,U),X,Lin,Bound,Sold) :- ( Bound < U -> ( Bound > L -> Strict is Sold /\ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), setarg(3,Att,strictness(Strict)) ; Bound =:= L, Sold /\ 2 =:= 0, solve_bound(Lin,Bound) ) ; true ). uiu(t_Lu(L,U),X,Lin,Bound,Sold) :- ( Bound < U -> ( L < Bound -> Strict is Sold /\ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_Lu(L,Bound))), setarg(3,Att,strictness(Strict)) ; L =:= Bound, Sold /\ 2 =:= 0, solve_bound(Lin,Bound) ) ; true ). uiu(t_U(U),X,_Lin,Bound,Sold) :- ( Bound < U -> Strict is Sold /\ 2, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), lb(ClassX,OrdX,Vlb-Vb-Lb), Bound =< Lb + U -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_U(Bound))), setarg(3,Att2,strictness(Strict)), pivot_a(Vlb,X,Vb,t_u(Bound)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_U(Bound))), setarg(3,Att,strictness(Strict)), Delta is Bound - U, backsubst_delta(ClassX,OrdX,X,Delta) ) ; true ). uiu(t_lU(L,U),X,Lin,Bound,Sold) :- ( Bound < U -> ( L < Bound -> Strict is Sold /\ 2, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), lb(ClassX,OrdX,Vlb-Vb-Lb), Bound =< Lb + U -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_lU(L,Bound))), setarg(3,Att2,strictness(Strict)), pivot_a(Vlb,X,Vb,t_lu(L,Bound)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_lU(L,Bound))), setarg(3,Att,strictness(Strict)), Delta is Bound - U, backsubst_delta(ClassX,OrdX,X,Delta) ) ; L =:= Bound, Sold /\ 2 =:= 0, solve_bound(Lin,Bound) ) ; true ). % uius(Type,X,Lin,Bound,Strict) % % Updates upper bound of independent variable X with linear equation % Lin that had type Type and strictness Strict, to the new strict % bound Bound. (see also uiu/5) uius(t_none,X,_Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_u(Bound))), setarg(3,Att,strictness(1)). uius(t_u(U),X,_Lin,Bound,Sold) :- ( U < Bound -> true ; Bound < U -> Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_u(Bound))), setarg(3,Att,strictness(Strict)) ; Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uius(t_l(L),X,_Lin,Bound,Sold) :- L < Bound, Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), setarg(3,Att,strictness(Strict)). uius(t_L(L),X,_Lin,Bound,Sold) :- L < Bound, Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_Lu(L,Bound))), setarg(3,Att,strictness(Strict)). uius(t_lu(L,U),X,_Lin,Bound,Sold) :- ( U < Bound -> true ; Bound < U -> L < Bound, Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(L,Bound))), setarg(3,Att,strictness(Strict)) ; Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uius(t_Lu(L,U),X,_Lin,Bound,Sold) :- ( U < Bound -> true ; Bound < U -> L < Bound, Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_Lu(L,Bound))), setarg(3,Att,strictness(Strict)) ; Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uius(t_U(U),X,_Lin,Bound,Sold) :- ( U < Bound -> true ; Bound < U -> Strict is Sold \/ 1, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), lb(ClassX,OrdX,Vlb-Vb-Lb), Bound =< Lb + U -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_U(Bound))), setarg(3,Att2,strictness(Strict)), pivot_a(Vlb,X,Vb,t_u(Bound)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_U(Bound))), setarg(3,Att,strictness(Strict)), Delta is Bound - U, backsubst_delta(ClassX,OrdX,X,Delta) ) ; Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uius(t_lU(L,U),X,_Lin,Bound,Sold) :- ( U < Bound -> true ; Bound < U -> L < Bound, Strict is Sold \/ 1, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), lb(ClassX,OrdX,Vlb-Vb-Lb), Bound =< Lb + U -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_lU(L,Bound))), setarg(3,Att2,strictness(Strict)), pivot_a(Vlb,X,Vb,t_lu(L,Bound)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_lU(L,Bound))), setarg(3,Att,strictness(Strict)), Delta is Bound - U, backsubst_delta(ClassX,OrdX,X,Delta) ) ; Strict is Sold \/ 1, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). % uil(Type,X,Lin,Bound,Strict) % % Updates lower bound of independent variable X with linear equation % Lin that had type Type and strictness Strict, to the new non-strict % bound Bound. (see also uiu/5) uil(t_none,X,_Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_l(Bound))), setarg(3,Att,strictness(0)). uil(t_l(L),X,_Lin,Bound,Sold) :- ( Bound > L -> Strict is Sold /\ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_l(Bound))), setarg(3,Att,strictness(Strict)) ; true ). uil(t_u(U),X,Lin,Bound,_Sold) :- ( Bound < U -> get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))) ; Bound =:= U, solve_bound(Lin,Bound) ). uil(t_U(U),X,Lin,Bound,_Sold) :- ( Bound < U -> get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lU(Bound,U))) ; Bound =:= U, solve_bound(Lin,Bound) ). uil(t_lu(L,U),X,Lin,Bound,Sold) :- ( Bound > L -> ( Bound < U -> Strict is Sold /\ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), setarg(3,Att,strictness(Strict)) ; Bound =:= U, Sold /\ 1 =:= 0, solve_bound(Lin,Bound) ) ; true ). uil(t_lU(L,U),X,Lin,Bound,Sold) :- ( Bound > L -> ( Bound < U -> Strict is Sold /\ 1, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lU(Bound,U))), setarg(3,Att,strictness(Strict)) ; Bound =:= U, Sold /\ 1 =:= 0, solve_bound(Lin,Bound) ) ; true ). uil(t_L(L),X,_Lin,Bound,Sold) :- ( Bound > L -> Strict is Sold /\ 1, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), ub(ClassX,OrdX,Vub-Vb-Ub), Bound >= Ub + L -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_L(Bound))), setarg(3,Att2,strictness(Strict)), pivot_a(Vub,X,Vb,t_l(Bound)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_L(Bound))), setarg(3,Att,strictness(Strict)), Delta is Bound - L, backsubst_delta(ClassX,OrdX,X,Delta) ) ; true ). uil(t_Lu(L,U),X,Lin,Bound,Sold) :- ( Bound > L -> ( Bound < U -> Strict is Sold /\ 1, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), ub(ClassX,OrdX,Vub-Vb-Ub), Bound >= Ub + L -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_Lu(Bound,U))), setarg(3,Att2,strictness(Strict)), pivot_a(Vub,X,Vb,t_lu(Bound,U)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_Lu(Bound,U))), setarg(3,Att,strictness(Strict)), Delta is Bound - L, backsubst_delta(ClassX,OrdX,X,Delta) ) ; Bound =:= U, Sold /\ 1 =:= 0, solve_bound(Lin,Bound) ) ; true ). % uils(Type,X,Lin,Bound,Strict) % % Updates lower bound of independent variable X with linear equation % Lin that had type Type and strictness Strict, to the new strict % bound Bound. (see also uiu/5) uils(t_none,X,_Lin,Bound,_Sold) :- get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_l(Bound))), setarg(3,Att,strictness(2)). uils(t_l(L),X,_Lin,Bound,Sold) :- ( Bound < L -> true ; Bound > L -> Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_l(Bound))), setarg(3,Att,strictness(Strict)) ; Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uils(t_u(U),X,_Lin,Bound,Sold) :- Bound < U, Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), setarg(3,Att,strictness(Strict)). uils(t_U(U),X,_Lin,Bound,Sold) :- Bound < U, Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lU(Bound,U))), setarg(3,Att,strictness(Strict)). uils(t_lu(L,U),X,_Lin,Bound,Sold) :- ( Bound < L -> true ; Bound > L -> Bound < U, Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lu(Bound,U))), setarg(3,Att,strictness(Strict)) ; Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uils(t_lU(L,U),X,_Lin,Bound,Sold) :- ( Bound < L -> true ; Bound > L -> Bound < U, Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(2,Att,type(t_lU(Bound,U))), setarg(3,Att,strictness(Strict)) ; Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uils(t_L(L),X,_Lin,Bound,Sold) :- ( Bound < L -> true ; Bound > L -> Strict is Sold \/ 2, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), ub(ClassX,OrdX,Vub-Vb-Ub), Bound >= Ub + L -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_L(Bound))), setarg(3,Att2,strictness(Strict)), pivot_a(Vub,X,Vb,t_l(Bound)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_L(Bound))), setarg(3,Att,strictness(Strict)), Delta is Bound - L, backsubst_delta(ClassX,OrdX,X,Delta) ) ; Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). uils(t_Lu(L,U),X,_Lin,Bound,Sold) :- ( Bound < L -> true ; Bound > L -> Bound < U, Strict is Sold \/ 2, ( get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), ub(ClassX,OrdX,Vub-Vb-Ub), Bound >= Ub + L -> get_attr(X,clpqr_itf,Att2), % changed? setarg(2,Att2,type(t_Lu(Bound,U))), setarg(3,Att2,strictness(Strict)), pivot_a(Vub,X,Vb,t_lu(Bound,U)), reconsider(X) ; get_attr(X,clpqr_itf,Att), arg(5,Att,order(OrdX)), arg(6,Att,class(ClassX)), setarg(2,Att,type(t_Lu(Bound,U))), setarg(3,Att,strictness(Strict)), Delta is Bound - L, backsubst_delta(ClassX,OrdX,X,Delta) ) ; Strict is Sold \/ 2, get_attr(X,clpqr_itf,Att), setarg(3,Att,strictness(Strict)) ). % reconsider_upper(X,Lin,U) % % Checks if the upperbound of X which is U, satisfies the bounds % of the variables in Lin: let R be the sum of all the bounds on % the variables in Lin, and I be the inhomogene part of Lin, then % upperbound U should be larger than R + I (R may contain % lowerbounds). % See also rcb/3 in bv.pl % The code could probably be further specialized to only % decrement/increment in case a variable takes a value equal to a % _strict_ upper/lower bound. Also note that this is only for the % CLP(Q) version. The CLP(R) fuzzy arithmetic makes it useless to % really distinguish between strict and non-strict inequalities. reconsider_upper(X,[I,R|H],U) :- R + I >= U, % violation !, dec_step(H,Status), % we want to decrement R rcbl_status(Status,X,[],Binds,[],u(U)), export_binding(Binds). reconsider_upper( _, _, _). % reconsider_lower(X,Lin,L) % % Checks if the lowerbound of X which is L, satisfies the bounds % of the variables in Lin: let R be the sum of all the bounds on % the variables in Lin, and I be the inhomogene part of Lin, then % lowerbound L should be smaller than R + I (R may contain % upperbounds). % See also rcb/3 in bv.pl reconsider_lower(X,[I,R|H],L) :- R + I =< L, % violation !, inc_step(H,Status), % we want to increment R rcbl_status(Status,X,[],Binds,[],l(L)), export_binding(Binds). reconsider_lower(_,_,_). % % lin is dereferenced % % solve_bound(Lin,Bound) % % Solves the linear equation Lin - Bound = 0 % Lin is the linear equation of X, a variable whose bounds have narrowed to value Bound solve_bound(Lin,Bound) :- Bound =:= 0, !, solve(Lin). solve_bound(Lin,Bound) :- Nb is -Bound, normalize_scalar(Nb,Nbs), add_linear_11(Nbs,Lin,Eq), solve(Eq).