; ; generated: 25 October 1989 ; ; option(s): ; ; ; ; (deriv) ops8 ; ; ; ; David H. D. Warren ; ; ; ; symbolic derivative of (x+1)*((^(x,2)+2)*(^(x,3)+3)) (= (top) (ops8)) (= (ops8) (d (* (+ x 1) (* (+ (^ x 2) 2) (+ (^ x 3) 3))) x $_)) (= (d (+ $U $V) $X (+ $DU $DV)) ( (set-det) (d $U $X $DU) (d $V $X $DV))) (= (d (- $U $V) $X (- $DU $DV)) ( (set-det) (d $U $X $DU) (d $V $X $DV))) (= (d (* $U $V) $X (+ (* $DU $V) (* $U $DV))) ( (set-det) (d $U $X $DU) (d $V $X $DV))) (= (d (/ $U $V) $X (/ (- (* $DU $V) (* $U $DV)) (^ $V 2))) ( (set-det) (d $U $X $DU) (d $V $X $DV))) (= (d (^ $U $N) $X (* (* $DU $N) (^ $U $N1))) ( (set-det) (integer $N) (is $N1 (- $N 1)) (d $U $X $DU))) (= (d (- $U) $X (- $DU)) ( (set-det) (d $U $X $DU))) (= (d (exp $U) $X (* (exp $U) $DU)) ( (set-det) (d $U $X $DU))) (= (d (log $U) $X (/ $DU $U)) ( (set-det) (d $U $X $DU))) (= (d $X $X 1) (set-det)) (= (d $_ $_ 0) True)