""" Integrate functions by rewriting them as Meijer G-functions. There are three user-visible functions that can be used by other parts of the sympy library to solve various integration problems: - meijerint_indefinite - meijerint_definite - meijerint_inversion They can be used to compute, respectively, indefinite integrals, definite integrals over intervals of the real line, and inverse laplace-type integrals (from c-I*oo to c+I*oo). See the respective docstrings for details. The main references for this are: [L] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 [R] Kelly B. Roach. Meijer G Function Representations. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 205-211, New York, 1997. ACM. [P] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990). Integrals and Series: More Special Functions, Vol. 3,. Gordon and Breach Science Publisher """ from __future__ import annotations import itertools from sympy import SYMPY_DEBUG from sympy.core import S, Expr from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.function import (expand, expand_mul, expand_power_base, expand_trig, Function) from sympy.core.mul import Mul from sympy.core.intfunc import ilcm from sympy.core.numbers import Rational, pi from sympy.core.relational import Eq, Ne, _canonical_coeff from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import Dummy, symbols, Wild, Symbol from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (re, im, arg, Abs, sign, unpolarify, polarify, polar_lift, principal_branch, unbranched_argument, periodic_argument) from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.hyperbolic import (cosh, sinh, _rewrite_hyperbolics_as_exp, HyperbolicFunction) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.trigonometric import (cos, sin, sinc, TrigonometricFunction) from sympy.functions.special.bessel import besselj, bessely, besseli, besselk from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.elliptic_integrals import elliptic_k, elliptic_e from sympy.functions.special.error_functions import (erf, erfc, erfi, Ei, expint, Si, Ci, Shi, Chi, fresnels, fresnelc) from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper, meijerg from sympy.functions.special.singularity_functions import SingularityFunction from .integrals import Integral from sympy.logic.boolalg import And, Or, BooleanAtom, Not, BooleanFunction from sympy.polys import cancel, factor from sympy.utilities.iterables import multiset_partitions from sympy.utilities.misc import debug as _debug from sympy.utilities.misc import debugf as _debugf # keep this at top for easy reference z = Dummy('z') def _has(res, *f): # return True if res has f; in the case of Piecewise # only return True if *all* pieces have f res = piecewise_fold(res) if getattr(res, 'is_Piecewise', False): return all(_has(i, *f) for i in res.args) return res.has(*f) def _create_lookup_table(table): """ Add formulae for the function -> meijerg lookup table. """ def wild(n): return Wild(n, exclude=[z]) p, q, a, b, c = list(map(wild, 'pqabc')) n = Wild('n', properties=[lambda x: x.is_Integer and x > 0]) t = p*z**q def add(formula, an, ap, bm, bq, arg=t, fac=S.One, cond=True, hint=True): table.setdefault(_mytype(formula, z), []).append((formula, [(fac, meijerg(an, ap, bm, bq, arg))], cond, hint)) def addi(formula, inst, cond, hint=True): table.setdefault( _mytype(formula, z), []).append((formula, inst, cond, hint)) def constant(a): return [(a, meijerg([1], [], [], [0], z)), (a, meijerg([], [1], [0], [], z))] table[()] = [(a, constant(a), True, True)] # [P], Section 8. class IsNonPositiveInteger(Function): @classmethod def eval(cls, arg): arg = unpolarify(arg) if arg.is_Integer is True: return arg <= 0 # Section 8.4.2 # TODO this needs more polar_lift (c/f entry for exp) add(Heaviside(t - b)*(t - b)**(a - 1), [a], [], [], [0], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside(b - t)*(b - t)**(a - 1), [], [a], [0], [], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside(z - (b/p)**(1/q))*(t - b)**(a - 1), [a], [], [], [0], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside((b/p)**(1/q) - z)*(b - t)**(a - 1), [], [a], [0], [], t/b, gamma(a)*b**(a - 1), And(b > 0)) add((b + t)**(-a), [1 - a], [], [0], [], t/b, b**(-a)/gamma(a), hint=Not(IsNonPositiveInteger(a))) add(Abs(b - t)**(-a), [1 - a], [(1 - a)/2], [0], [(1 - a)/2], t/b, 2*sin(pi*a/2)*gamma(1 - a)*Abs(b)**(-a), re(a) < 1) add((t**a - b**a)/(t - b), [0, a], [], [0, a], [], t/b, b**(a - 1)*sin(a*pi)/pi) # 12 def A1(r, sign, nu): return pi**Rational(-1, 2)*(-sign*nu/2)**(1 - 2*r) def tmpadd(r, sgn): # XXX the a**2 is bad for matching add((sqrt(a**2 + t) + sgn*a)**b/(a**2 + t)**r, [(1 + b)/2, 1 - 2*r + b/2], [], [(b - sgn*b)/2], [(b + sgn*b)/2], t/a**2, a**(b - 2*r)*A1(r, sgn, b)) tmpadd(0, 1) tmpadd(0, -1) tmpadd(S.Half, 1) tmpadd(S.Half, -1) # 13 def tmpadd(r, sgn): add((sqrt(a + p*z**q) + sgn*sqrt(p)*z**(q/2))**b/(a + p*z**q)**r, [1 - r + sgn*b/2], [1 - r - sgn*b/2], [0, S.Half], [], p*z**q/a, a**(b/2 - r)*A1(r, sgn, b)) tmpadd(0, 1) tmpadd(0, -1) tmpadd(S.Half, 1) tmpadd(S.Half, -1) # (those after look obscure) # Section 8.4.3 add(exp(polar_lift(-1)*t), [], [], [0], []) # TODO can do sin^n, sinh^n by expansion ... where? # 8.4.4 (hyperbolic functions) add(sinh(t), [], [1], [S.Half], [1, 0], t**2/4, pi**Rational(3, 2)) add(cosh(t), [], [S.Half], [0], [S.Half, S.Half], t**2/4, pi**Rational(3, 2)) # Section 8.4.5 # TODO can do t + a. but can also do by expansion... (XXX not really) add(sin(t), [], [], [S.Half], [0], t**2/4, sqrt(pi)) add(cos(t), [], [], [0], [S.Half], t**2/4, sqrt(pi)) # Section 8.4.6 (sinc function) add(sinc(t), [], [], [0], [Rational(-1, 2)], t**2/4, sqrt(pi)/2) # Section 8.5.5 def make_log1(subs): N = subs[n] return [(S.NegativeOne**N*factorial(N), meijerg([], [1]*(N + 1), [0]*(N + 1), [], t))] def make_log2(subs): N = subs[n] return [(factorial(N), meijerg([1]*(N + 1), [], [], [0]*(N + 1), t))] # TODO these only hold for positive p, and can be made more general # but who uses log(x)*Heaviside(a-x) anyway ... # TODO also it would be nice to derive them recursively ... addi(log(t)**n*Heaviside(1 - t), make_log1, True) addi(log(t)**n*Heaviside(t - 1), make_log2, True) def make_log3(subs): return make_log1(subs) + make_log2(subs) addi(log(t)**n, make_log3, True) addi(log(t + a), constant(log(a)) + [(S.One, meijerg([1, 1], [], [1], [0], t/a))], True) addi(log(Abs(t - a)), constant(log(Abs(a))) + [(pi, meijerg([1, 1], [S.Half], [1], [0, S.Half], t/a))], True) # TODO log(x)/(x+a) and log(x)/(x-1) can also be done. should they # be derivable? # TODO further formulae in this section seem obscure # Sections 8.4.9-10 # TODO # Section 8.4.11 addi(Ei(t), constant(-S.ImaginaryUnit*pi) + [(S.NegativeOne, meijerg([], [1], [0, 0], [], t*polar_lift(-1)))], True) # Section 8.4.12 add(Si(t), [1], [], [S.Half], [0, 0], t**2/4, sqrt(pi)/2) add(Ci(t), [], [1], [0, 0], [S.Half], t**2/4, -sqrt(pi)/2) # Section 8.4.13 add(Shi(t), [S.Half], [], [0], [Rational(-1, 2), Rational(-1, 2)], polar_lift(-1)*t**2/4, t*sqrt(pi)/4) add(Chi(t), [], [S.Half, 1], [0, 0], [S.Half, S.Half], t**2/4, - pi**S('3/2')/2) # generalized exponential integral add(expint(a, t), [], [a], [a - 1, 0], [], t) # Section 8.4.14 add(erf(t), [1], [], [S.Half], [0], t**2, 1/sqrt(pi)) # TODO exp(-x)*erf(I*x) does not work add(erfc(t), [], [1], [0, S.Half], [], t**2, 1/sqrt(pi)) # This formula for erfi(z) yields a wrong(?) minus sign #add(erfi(t), [1], [], [S.Half], [0], -t**2, I/sqrt(pi)) add(erfi(t), [S.Half], [], [0], [Rational(-1, 2)], -t**2, t/sqrt(pi)) # Fresnel Integrals add(fresnels(t), [1], [], [Rational(3, 4)], [0, Rational(1, 4)], pi**2*t**4/16, S.Half) add(fresnelc(t), [1], [], [Rational(1, 4)], [0, Rational(3, 4)], pi**2*t**4/16, S.Half) ##### bessel-type functions ##### # Section 8.4.19 add(besselj(a, t), [], [], [a/2], [-a/2], t**2/4) # all of the following are derivable #add(sin(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [(1+a)/2], # [-a/2, a/2, (1-a)/2], t**2, 1/sqrt(2)) #add(cos(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [a/2], # [-a/2, (1+a)/2, (1-a)/2], t**2, 1/sqrt(2)) #add(besselj(a, t)**2, [S.Half], [], [a], [-a, 0], t**2, 1/sqrt(pi)) #add(besselj(a, t)*besselj(b, t), [0, S.Half], [], [(a + b)/2], # [-(a+b)/2, (a - b)/2, (b - a)/2], t**2, 1/sqrt(pi)) # Section 8.4.20 add(bessely(a, t), [], [-(a + 1)/2], [a/2, -a/2], [-(a + 1)/2], t**2/4) # TODO all of the following should be derivable #add(sin(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(1 - a - 1)/2], # [(1 + a)/2, (1 - a)/2], [(1 - a - 1)/2, (1 - 1 - a)/2, (1 - 1 + a)/2], # t**2, 1/sqrt(2)) #add(cos(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(0 - a - 1)/2], # [(0 + a)/2, (0 - a)/2], [(0 - a - 1)/2, (1 - 0 - a)/2, (1 - 0 + a)/2], # t**2, 1/sqrt(2)) #add(besselj(a, t)*bessely(b, t), [0, S.Half], [(a - b - 1)/2], # [(a + b)/2, (a - b)/2], [(a - b - 1)/2, -(a + b)/2, (b - a)/2], # t**2, 1/sqrt(pi)) #addi(bessely(a, t)**2, # [(2/sqrt(pi), meijerg([], [S.Half, S.Half - a], [0, a, -a], # [S.Half - a], t**2)), # (1/sqrt(pi), meijerg([S.Half], [], [a], [-a, 0], t**2))], # True) #addi(bessely(a, t)*bessely(b, t), # [(2/sqrt(pi), meijerg([], [0, S.Half, (1 - a - b)/2], # [(a + b)/2, (a - b)/2, (b - a)/2, -(a + b)/2], # [(1 - a - b)/2], t**2)), # (1/sqrt(pi), meijerg([0, S.Half], [], [(a + b)/2], # [-(a + b)/2, (a - b)/2, (b - a)/2], t**2))], # True) # Section 8.4.21 ? # Section 8.4.22 add(besseli(a, t), [], [(1 + a)/2], [a/2], [-a/2, (1 + a)/2], t**2/4, pi) # TODO many more formulas. should all be derivable # Section 8.4.23 add(besselk(a, t), [], [], [a/2, -a/2], [], t**2/4, S.Half) # TODO many more formulas. should all be derivable # Complete elliptic integrals K(z) and E(z) add(elliptic_k(t), [S.Half, S.Half], [], [0], [0], -t, S.Half) add(elliptic_e(t), [S.Half, 3*S.Half], [], [0], [0], -t, Rational(-1, 2)/2) #################################################################### # First some helper functions. #################################################################### from sympy.utilities.timeutils import timethis timeit = timethis('meijerg') def _mytype(f: Basic, x: Symbol) -> tuple[type[Basic], ...]: """ Create a hashable entity describing the type of f. """ def key(x: type[Basic]) -> tuple[int, int, str]: return x.class_key() if x not in f.free_symbols: return () elif f.is_Function: return type(f), return tuple(sorted((t for a in f.args for t in _mytype(a, x)), key=key)) class _CoeffExpValueError(ValueError): """ Exception raised by _get_coeff_exp, for internal use only. """ pass def _get_coeff_exp(expr, x): """ When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b. Examples ======== >>> from sympy.abc import x, a, b >>> from sympy.integrals.meijerint import _get_coeff_exp >>> _get_coeff_exp(a*x**b, x) (a, b) >>> _get_coeff_exp(x, x) (1, 1) >>> _get_coeff_exp(2*x, x) (2, 1) >>> _get_coeff_exp(x**3, x) (1, 3) """ from sympy.simplify import powsimp (c, m) = expand_power_base(powsimp(expr)).as_coeff_mul(x) if not m: return c, S.Zero [m] = m if m.is_Pow: if m.base != x: raise _CoeffExpValueError('expr not of form a*x**b') return c, m.exp elif m == x: return c, S.One else: raise _CoeffExpValueError('expr not of form a*x**b: %s' % expr) def _exponents(expr, x): """ Find the exponents of ``x`` (not including zero) in ``expr``. Examples ======== >>> from sympy.integrals.meijerint import _exponents >>> from sympy.abc import x, y >>> from sympy import sin >>> _exponents(x, x) {1} >>> _exponents(x**2, x) {2} >>> _exponents(x**2 + x, x) {1, 2} >>> _exponents(x**3*sin(x + x**y) + 1/x, x) {-1, 1, 3, y} """ def _exponents_(expr, x, res): if expr == x: res.update([1]) return if expr.is_Pow and expr.base == x: res.update([expr.exp]) return for argument in expr.args: _exponents_(argument, x, res) res = set() _exponents_(expr, x, res) return res def _functions(expr, x): """ Find the types of functions in expr, to estimate the complexity. """ return {e.func for e in expr.atoms(Function) if x in e.free_symbols} def _find_splitting_points(expr, x): """ Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr. Examples ======== >>> from sympy.integrals.meijerint import _find_splitting_points as fsp >>> from sympy import sin >>> from sympy.abc import x >>> fsp(x, x) {0} >>> fsp((x-1)**3, x) {1} >>> fsp(sin(x+3)*x, x) {-3, 0} """ p, q = [Wild(n, exclude=[x]) for n in 'pq'] def compute_innermost(expr, res): if not isinstance(expr, Expr): return m = expr.match(p*x + q) if m and m[p] != 0: res.add(-m[q]/m[p]) return if expr.is_Atom: return for argument in expr.args: compute_innermost(argument, res) innermost = set() compute_innermost(expr, innermost) return innermost def _split_mul(f, x): """ Split expression ``f`` into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is "the rest". Examples ======== >>> from sympy.integrals.meijerint import _split_mul >>> from sympy import sin >>> from sympy.abc import s, x >>> _split_mul((3*x)**s*sin(x**2)*x, x) (3**s, x*x**s, sin(x**2)) """ fac = S.One po = S.One g = S.One f = expand_power_base(f) args = Mul.make_args(f) for a in args: if a == x: po *= x elif x not in a.free_symbols: fac *= a else: if a.is_Pow and x not in a.exp.free_symbols: c, t = a.base.as_coeff_mul(x) if t != (x,): c, t = expand_mul(a.base).as_coeff_mul(x) if t == (x,): po *= x**a.exp fac *= unpolarify(polarify(c**a.exp, subs=False)) continue g *= a return fac, po, g def _mul_args(f): """ Return a list ``L`` such that ``Mul(*L) == f``. If ``f`` is not a ``Mul`` or ``Pow``, ``L=[f]``. If ``f=g**n`` for an integer ``n``, ``L=[g]*n``. If ``f`` is a ``Mul``, ``L`` comes from applying ``_mul_args`` to all factors of ``f``. """ args = Mul.make_args(f) gs = [] for g in args: if g.is_Pow and g.exp.is_Integer: n = g.exp base = g.base if n < 0: n = -n base = 1/base gs += [base]*n else: gs.append(g) return gs def _mul_as_two_parts(f): """ Find all the ways to split ``f`` into a product of two terms. Return None on failure. Explanation =========== Although the order is canonical from multiset_partitions, this is not necessarily the best order to process the terms. For example, if the case of len(gs) == 2 is removed and multiset is allowed to sort the terms, some tests fail. Examples ======== >>> from sympy.integrals.meijerint import _mul_as_two_parts >>> from sympy import sin, exp, ordered >>> from sympy.abc import x >>> list(ordered(_mul_as_two_parts(x*sin(x)*exp(x)))) [(x, exp(x)*sin(x)), (x*exp(x), sin(x)), (x*sin(x), exp(x))] """ gs = _mul_args(f) if len(gs) < 2: return None if len(gs) == 2: return [tuple(gs)] return [(Mul(*x), Mul(*y)) for (x, y) in multiset_partitions(gs, 2)] def _inflate_g(g, n): """ Return C, h such that h is a G function of argument z**n and g = C*h. """ # TODO should this be a method of meijerg? # See: [L, page 150, equation (5)] def inflate(params, n): """ (a1, .., ak) -> (a1/n, (a1+1)/n, ..., (ak + n-1)/n) """ return [(a + i)/n for a, i in itertools.product(params, range(n))] v = S(len(g.ap) - len(g.bq)) C = n**(1 + g.nu + v/2) C /= (2*pi)**((n - 1)*g.delta) return C, meijerg(inflate(g.an, n), inflate(g.aother, n), inflate(g.bm, n), inflate(g.bother, n), g.argument**n * n**(n*v)) def _flip_g(g): """ Turn the G function into one of inverse argument (i.e. G(1/x) -> G'(x)) """ # See [L], section 5.2 def tr(l): return [1 - a for a in l] return meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), 1/g.argument) def _inflate_fox_h(g, a): r""" Let d denote the integrand in the definition of the G function ``g``. Consider the function H which is defined in the same way, but with integrand d/Gamma(a*s) (contour conventions as usual). If ``a`` is rational, the function H can be written as C*G, for a constant C and a G-function G. This function returns C, G. """ if a < 0: return _inflate_fox_h(_flip_g(g), -a) p = S(a.p) q = S(a.q) # We use the substitution s->qs, i.e. inflate g by q. We are left with an # extra factor of Gamma(p*s), for which we use Gauss' multiplication # theorem. D, g = _inflate_g(g, q) z = g.argument D /= (2*pi)**((1 - p)/2)*p**Rational(-1, 2) z /= p**p bs = [(n + 1)/p for n in range(p)] return D, meijerg(g.an, g.aother, g.bm, list(g.bother) + bs, z) _dummies: dict[tuple[str, str], Dummy] = {} def _dummy(name, token, expr, **kwargs): """ Return a dummy. This will return the same dummy if the same token+name is requested more than once, and it is not already in expr. This is for being cache-friendly. """ d = _dummy_(name, token, **kwargs) if d in expr.free_symbols: return Dummy(name, **kwargs) return d def _dummy_(name, token, **kwargs): """ Return a dummy associated to name and token. Same effect as declaring it globally. """ global _dummies if not (name, token) in _dummies: _dummies[(name, token)] = Dummy(name, **kwargs) return _dummies[(name, token)] def _is_analytic(f, x): """ Check if f(x), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere """ return not any(x in expr.free_symbols for expr in f.atoms(Heaviside, Abs)) def _condsimp(cond, first=True): """ Do naive simplifications on ``cond``. Explanation =========== Note that this routine is completely ad-hoc, simplification rules being added as need arises rather than following any logical pattern. Examples ======== >>> from sympy.integrals.meijerint import _condsimp as simp >>> from sympy import Or, Eq >>> from sympy.abc import x, y >>> simp(Or(x < y, Eq(x, y))) x <= y """ if first: cond = cond.replace(lambda _: _.is_Relational, _canonical_coeff) first = False if not isinstance(cond, BooleanFunction): return cond p, q, r = symbols('p q r', cls=Wild) # transforms tests use 0, 4, 5 and 11-14 # meijer tests use 0, 2, 11, 14 # joint_rv uses 6, 7 rules = [ (Or(p < q, Eq(p, q)), p <= q), # 0 # The next two obviously are instances of a general pattern, but it is # easier to spell out the few cases we care about. (And(Abs(arg(p)) <= pi, Abs(arg(p) - 2*pi) <= pi), Eq(arg(p) - pi, 0)), # 1 (And(Abs(2*arg(p) + pi) <= pi, Abs(2*arg(p) - pi) <= pi), Eq(arg(p), 0)), # 2 (And(Abs(2*arg(p) + pi) < pi, Abs(2*arg(p) - pi) <= pi), S.false), # 3 (And(Abs(arg(p) - pi/2) <= pi/2, Abs(arg(p) + pi/2) <= pi/2), Eq(arg(p), 0)), # 4 (And(Abs(arg(p) - pi/2) <= pi/2, Abs(arg(p) + pi/2) < pi/2), S.false), # 5 (And(Abs(arg(p**2/2 + 1)) < pi, Ne(Abs(arg(p**2/2 + 1)), pi)), S.true), # 6 (Or(Abs(arg(p**2/2 + 1)) < pi, Ne(1/(p**2/2 + 1), 0)), S.true), # 7 (And(Abs(unbranched_argument(p)) <= pi, Abs(unbranched_argument(exp_polar(-2*pi*S.ImaginaryUnit)*p)) <= pi), Eq(unbranched_argument(exp_polar(-S.ImaginaryUnit*pi)*p), 0)), # 8 (And(Abs(unbranched_argument(p)) <= pi/2, Abs(unbranched_argument(exp_polar(-pi*S.ImaginaryUnit)*p)) <= pi/2), Eq(unbranched_argument(exp_polar(-S.ImaginaryUnit*pi/2)*p), 0)), # 9 (Or(p <= q, And(p < q, r)), p <= q), # 10 (Ne(p**2, 1) & (p**2 > 1), p**2 > 1), # 11 (Ne(1/p, 1) & (cos(Abs(arg(p)))*Abs(p) > 1), Abs(p) > 1), # 12 (Ne(p, 2) & (cos(Abs(arg(p)))*Abs(p) > 2), Abs(p) > 2), # 13 ((Abs(arg(p)) < pi/2) & (cos(Abs(arg(p)))*sqrt(Abs(p**2)) > 1), p**2 > 1), # 14 ] cond = cond.func(*[_condsimp(_, first) for _ in cond.args]) change = True while change: change = False for irule, (fro, to) in enumerate(rules): if fro.func != cond.func: continue for n, arg1 in enumerate(cond.args): if r in fro.args[0].free_symbols: m = arg1.match(fro.args[1]) num = 1 else: num = 0 m = arg1.match(fro.args[0]) if not m: continue otherargs = [x.subs(m) for x in fro.args[:num] + fro.args[num + 1:]] otherlist = [n] for arg2 in otherargs: for k, arg3 in enumerate(cond.args): if k in otherlist: continue if arg2 == arg3: otherlist += [k] break if isinstance(arg3, And) and arg2.args[1] == r and \ isinstance(arg2, And) and arg2.args[0] in arg3.args: otherlist += [k] break if isinstance(arg3, And) and arg2.args[0] == r and \ isinstance(arg2, And) and arg2.args[1] in arg3.args: otherlist += [k] break if len(otherlist) != len(otherargs) + 1: continue newargs = [arg_ for (k, arg_) in enumerate(cond.args) if k not in otherlist] + [to.subs(m)] if SYMPY_DEBUG: if irule not in (0, 2, 4, 5, 6, 7, 11, 12, 13, 14): print('used new rule:', irule) cond = cond.func(*newargs) change = True break # final tweak def rel_touchup(rel): if rel.rel_op != '==' or rel.rhs != 0: return rel # handle Eq(*, 0) LHS = rel.lhs m = LHS.match(arg(p)**q) if not m: m = LHS.match(unbranched_argument(polar_lift(p)**q)) if not m: if isinstance(LHS, periodic_argument) and not LHS.args[0].is_polar \ and LHS.args[1] is S.Infinity: return (LHS.args[0] > 0) return rel return (m[p] > 0) cond = cond.replace(lambda _: _.is_Relational, rel_touchup) if SYMPY_DEBUG: print('_condsimp: ', cond) return cond def _eval_cond(cond): """ Re-evaluate the conditions. """ if isinstance(cond, bool): return cond return _condsimp(cond.doit()) #################################################################### # Now the "backbone" functions to do actual integration. #################################################################### def _my_principal_branch(expr, period, full_pb=False): """ Bring expr nearer to its principal branch by removing superfluous factors. This function does *not* guarantee to yield the principal branch, to avoid introducing opaque principal_branch() objects, unless full_pb=True. """ res = principal_branch(expr, period) if not full_pb: res = res.replace(principal_branch, lambda x, y: x) return res def _rewrite_saxena_1(fac, po, g, x): """ Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G. """ _, s = _get_coeff_exp(po, x) a, b = _get_coeff_exp(g.argument, x) period = g.get_period() a = _my_principal_branch(a, period) # We substitute t = x**b. C = fac/(Abs(b)*a**((s + 1)/b - 1)) # Absorb a factor of (at)**((1 + s)/b - 1). def tr(l): return [a + (1 + s)/b - 1 for a in l] return C, meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), a*x) def _check_antecedents_1(g, x, helper=False): r""" Return a condition under which the mellin transform of g exists. Any power of x has already been absorbed into the G function, so this is just $\int_0^\infty g\, dx$. See [L, section 5.6.1]. (Note that s=1.) If ``helper`` is True, only check if the MT exists at infinity, i.e. if $\int_1^\infty g\, dx$ exists. """ # NOTE if you update these conditions, please update the documentation as well delta = g.delta eta, _ = _get_coeff_exp(g.argument, x) m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) if p > q: def tr(l): return [1 - x for x in l] return _check_antecedents_1(meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), x/eta), x) tmp = [-re(b) < 1 for b in g.bm] + [1 < 1 - re(a) for a in g.an] cond_3 = And(*tmp) tmp += [-re(b) < 1 for b in g.bother] tmp += [1 < 1 - re(a) for a in g.aother] cond_3_star = And(*tmp) cond_4 = (-re(g.nu) + (q + 1 - p)/2 > q - p) def debug(*msg): _debug(*msg) def debugf(string, arg): _debugf(string, arg) debug('Checking antecedents for 1 function:') debugf(' delta=%s, eta=%s, m=%s, n=%s, p=%s, q=%s', (delta, eta, m, n, p, q)) debugf(' ap = %s, %s', (list(g.an), list(g.aother))) debugf(' bq = %s, %s', (list(g.bm), list(g.bother))) debugf(' cond_3=%s, cond_3*=%s, cond_4=%s', (cond_3, cond_3_star, cond_4)) conds = [] # case 1 case1 = [] tmp1 = [1 <= n, p < q, 1 <= m] tmp2 = [1 <= p, 1 <= m, Eq(q, p + 1), Not(And(Eq(n, 0), Eq(m, p + 1)))] tmp3 = [1 <= p, Eq(q, p)] for k in range(ceiling(delta/2) + 1): tmp3 += [Ne(Abs(unbranched_argument(eta)), (delta - 2*k)*pi)] tmp = [delta > 0, Abs(unbranched_argument(eta)) < delta*pi] extra = [Ne(eta, 0), cond_3] if helper: extra = [] for t in [tmp1, tmp2, tmp3]: case1 += [And(*(t + tmp + extra))] conds += case1 debug(' case 1:', case1) # case 2 extra = [cond_3] if helper: extra = [] case2 = [And(Eq(n, 0), p + 1 <= m, m <= q, Abs(unbranched_argument(eta)) < delta*pi, *extra)] conds += case2 debug(' case 2:', case2) # case 3 extra = [cond_3, cond_4] if helper: extra = [] case3 = [And(p < q, 1 <= m, delta > 0, Eq(Abs(unbranched_argument(eta)), delta*pi), *extra)] case3 += [And(p <= q - 2, Eq(delta, 0), Eq(Abs(unbranched_argument(eta)), 0), *extra)] conds += case3 debug(' case 3:', case3) # TODO altered cases 4-7 # extra case from wofram functions site: # (reproduced verbatim from Prudnikov, section 2.24.2) # https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/01/ case_extra = [] case_extra += [Eq(p, q), Eq(delta, 0), Eq(unbranched_argument(eta), 0), Ne(eta, 0)] if not helper: case_extra += [cond_3] s = [] for a, b in zip(g.ap, g.bq): s += [b - a] case_extra += [re(Add(*s)) < 0] case_extra = And(*case_extra) conds += [case_extra] debug(' extra case:', [case_extra]) case_extra_2 = [And(delta > 0, Abs(unbranched_argument(eta)) < delta*pi)] if not helper: case_extra_2 += [cond_3] case_extra_2 = And(*case_extra_2) conds += [case_extra_2] debug(' second extra case:', [case_extra_2]) # TODO This leaves only one case from the three listed by Prudnikov. # Investigate if these indeed cover everything; if so, remove the rest. return Or(*conds) def _int0oo_1(g, x): r""" Evaluate $\int_0^\infty g\, dx$ using G functions, assuming the necessary conditions are fulfilled. Examples ======== >>> from sympy.abc import a, b, c, d, x, y >>> from sympy import meijerg >>> from sympy.integrals.meijerint import _int0oo_1 >>> _int0oo_1(meijerg([a], [b], [c], [d], x*y), x) gamma(-a)*gamma(c + 1)/(y*gamma(-d)*gamma(b + 1)) """ from sympy.simplify import gammasimp # See [L, section 5.6.1]. Note that s=1. eta, _ = _get_coeff_exp(g.argument, x) res = 1/eta # XXX TODO we should reduce order first for b in g.bm: res *= gamma(b + 1) for a in g.an: res *= gamma(1 - a - 1) for b in g.bother: res /= gamma(1 - b - 1) for a in g.aother: res /= gamma(a + 1) return gammasimp(unpolarify(res)) def _rewrite_saxena(fac, po, g1, g2, x, full_pb=False): """ Rewrite the integral ``fac*po*g1*g2`` from 0 to oo in terms of G functions with argument ``c*x``. Explanation =========== Return C, f1, f2 such that integral C f1 f2 from 0 to infinity equals integral fac ``po``, ``g1``, ``g2`` from 0 to infinity. Examples ======== >>> from sympy.integrals.meijerint import _rewrite_saxena >>> from sympy.abc import s, t, m >>> from sympy import meijerg >>> g1 = meijerg([], [], [0], [], s*t) >>> g2 = meijerg([], [], [m/2], [-m/2], t**2/4) >>> r = _rewrite_saxena(1, t**0, g1, g2, t) >>> r[0] s/(4*sqrt(pi)) >>> r[1] meijerg(((), ()), ((-1/2, 0), ()), s**2*t/4) >>> r[2] meijerg(((), ()), ((m/2,), (-m/2,)), t/4) """ def pb(g): a, b = _get_coeff_exp(g.argument, x) per = g.get_period() return meijerg(g.an, g.aother, g.bm, g.bother, _my_principal_branch(a, per, full_pb)*x**b) _, s = _get_coeff_exp(po, x) _, b1 = _get_coeff_exp(g1.argument, x) _, b2 = _get_coeff_exp(g2.argument, x) if (b1 < 0) == True: b1 = -b1 g1 = _flip_g(g1) if (b2 < 0) == True: b2 = -b2 g2 = _flip_g(g2) if not b1.is_Rational or not b2.is_Rational: return m1, n1 = b1.p, b1.q m2, n2 = b2.p, b2.q tau = ilcm(m1*n2, m2*n1) r1 = tau//(m1*n2) r2 = tau//(m2*n1) C1, g1 = _inflate_g(g1, r1) C2, g2 = _inflate_g(g2, r2) g1 = pb(g1) g2 = pb(g2) fac *= C1*C2 a1, b = _get_coeff_exp(g1.argument, x) a2, _ = _get_coeff_exp(g2.argument, x) # arbitrarily tack on the x**s part to g1 # TODO should we try both? exp = (s + 1)/b - 1 fac = fac/(Abs(b) * a1**exp) def tr(l): return [a + exp for a in l] g1 = meijerg(tr(g1.an), tr(g1.aother), tr(g1.bm), tr(g1.bother), a1*x) g2 = meijerg(g2.an, g2.aother, g2.bm, g2.bother, a2*x) from sympy.simplify import powdenest return powdenest(fac, polar=True), g1, g2 def _check_antecedents(g1, g2, x): """ Return a condition under which the integral theorem applies. """ # Yes, this is madness. # XXX TODO this is a testing *nightmare* # NOTE if you update these conditions, please update the documentation as well # The following conditions are found in # [P], Section 2.24.1 # # They are also reproduced (verbatim!) at # https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/ # # Note: k=l=r=alpha=1 sigma, _ = _get_coeff_exp(g1.argument, x) omega, _ = _get_coeff_exp(g2.argument, x) s, t, u, v = S([len(g1.bm), len(g1.an), len(g1.ap), len(g1.bq)]) m, n, p, q = S([len(g2.bm), len(g2.an), len(g2.ap), len(g2.bq)]) bstar = s + t - (u + v)/2 cstar = m + n - (p + q)/2 rho = g1.nu + (u - v)/2 + 1 mu = g2.nu + (p - q)/2 + 1 phi = q - p - (v - u) eta = 1 - (v - u) - mu - rho psi = (pi*(q - m - n) + Abs(unbranched_argument(omega)))/(q - p) theta = (pi*(v - s - t) + Abs(unbranched_argument(sigma)))/(v - u) _debug('Checking antecedents:') _debugf(' sigma=%s, s=%s, t=%s, u=%s, v=%s, b*=%s, rho=%s', (sigma, s, t, u, v, bstar, rho)) _debugf(' omega=%s, m=%s, n=%s, p=%s, q=%s, c*=%s, mu=%s,', (omega, m, n, p, q, cstar, mu)) _debugf(' phi=%s, eta=%s, psi=%s, theta=%s', (phi, eta, psi, theta)) def _c1(): for g in [g1, g2]: for i, j in itertools.product(g.an, g.bm): diff = i - j if diff.is_integer and diff.is_positive: return False return True c1 = _c1() c2 = And(*[re(1 + i + j) > 0 for i in g1.bm for j in g2.bm]) c3 = And(*[re(1 + i + j) < 1 + 1 for i in g1.an for j in g2.an]) c4 = And(*[(p - q)*re(1 + i - 1) - re(mu) > Rational(-3, 2) for i in g1.an]) c5 = And(*[(p - q)*re(1 + i) - re(mu) > Rational(-3, 2) for i in g1.bm]) c6 = And(*[(u - v)*re(1 + i - 1) - re(rho) > Rational(-3, 2) for i in g2.an]) c7 = And(*[(u - v)*re(1 + i) - re(rho) > Rational(-3, 2) for i in g2.bm]) c8 = (Abs(phi) + 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - 1)*(v - u)) > 0) c9 = (Abs(phi) - 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - 1)*(v - u)) > 0) c10 = (Abs(unbranched_argument(sigma)) < bstar*pi) c11 = Eq(Abs(unbranched_argument(sigma)), bstar*pi) c12 = (Abs(unbranched_argument(omega)) < cstar*pi) c13 = Eq(Abs(unbranched_argument(omega)), cstar*pi) # The following condition is *not* implemented as stated on the wolfram # function site. In the book of Prudnikov there is an additional part # (the And involving re()). However, I only have this book in russian, and # I don't read any russian. The following condition is what other people # have told me it means. # Worryingly, it is different from the condition implemented in REDUCE. # The REDUCE implementation: # https://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra/trunk/packages/defint/definta.red # (search for tst14) # The Wolfram alpha version: # https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/03/0014/ z0 = exp(-(bstar + cstar)*pi*S.ImaginaryUnit) zos = unpolarify(z0*omega/sigma) zso = unpolarify(z0*sigma/omega) if zos == 1/zso: c14 = And(Eq(phi, 0), bstar + cstar <= 1, Or(Ne(zos, 1), re(mu + rho + v - u) < 1, re(mu + rho + q - p) < 1)) else: def _cond(z): '''Returns True if abs(arg(1-z)) < pi, avoiding arg(0). Explanation =========== If ``z`` is 1 then arg is NaN. This raises a TypeError on `NaN < pi`. Previously this gave `False` so this behavior has been hardcoded here but someone should check if this NaN is more serious! This NaN is triggered by test_meijerint() in test_meijerint.py: `meijerint_definite(exp(x), x, 0, I)` ''' return z != 1 and Abs(arg(1 - z)) < pi c14 = And(Eq(phi, 0), bstar - 1 + cstar <= 0, Or(And(Ne(zos, 1), _cond(zos)), And(re(mu + rho + v - u) < 1, Eq(zos, 1)))) c14_alt = And(Eq(phi, 0), cstar - 1 + bstar <= 0, Or(And(Ne(zso, 1), _cond(zso)), And(re(mu + rho + q - p) < 1, Eq(zso, 1)))) # Since r=k=l=1, in our case there is c14_alt which is the same as calling # us with (g1, g2) = (g2, g1). The conditions below enumerate all cases # (i.e. we don't have to try arguments reversed by hand), and indeed try # all symmetric cases. (i.e. whenever there is a condition involving c14, # there is also a dual condition which is exactly what we would get when g1, # g2 were interchanged, *but c14 was unaltered*). # Hence the following seems correct: c14 = Or(c14, c14_alt) ''' When `c15` is NaN (e.g. from `psi` being NaN as happens during 'test_issue_4992' and/or `theta` is NaN as in 'test_issue_6253', both in `test_integrals.py`) the comparison to 0 formerly gave False whereas now an error is raised. To keep the old behavior, the value of NaN is replaced with False but perhaps a closer look at this condition should be made: XXX how should conditions leading to c15=NaN be handled? ''' try: lambda_c = (q - p)*Abs(omega)**(1/(q - p))*cos(psi) \ + (v - u)*Abs(sigma)**(1/(v - u))*cos(theta) # the TypeError might be raised here, e.g. if lambda_c is NaN if _eval_cond(lambda_c > 0) != False: c15 = (lambda_c > 0) else: def lambda_s0(c1, c2): return c1*(q - p)*Abs(omega)**(1/(q - p))*sin(psi) \ + c2*(v - u)*Abs(sigma)**(1/(v - u))*sin(theta) lambda_s = Piecewise( ((lambda_s0(+1, +1)*lambda_s0(-1, -1)), And(Eq(unbranched_argument(sigma), 0), Eq(unbranched_argument(omega), 0))), (lambda_s0(sign(unbranched_argument(omega)), +1)*lambda_s0(sign(unbranched_argument(omega)), -1), And(Eq(unbranched_argument(sigma), 0), Ne(unbranched_argument(omega), 0))), (lambda_s0(+1, sign(unbranched_argument(sigma)))*lambda_s0(-1, sign(unbranched_argument(sigma))), And(Ne(unbranched_argument(sigma), 0), Eq(unbranched_argument(omega), 0))), (lambda_s0(sign(unbranched_argument(omega)), sign(unbranched_argument(sigma))), True)) tmp = [lambda_c > 0, And(Eq(lambda_c, 0), Ne(lambda_s, 0), re(eta) > -1), And(Eq(lambda_c, 0), Eq(lambda_s, 0), re(eta) > 0)] c15 = Or(*tmp) except TypeError: c15 = False for cond, i in [(c1, 1), (c2, 2), (c3, 3), (c4, 4), (c5, 5), (c6, 6), (c7, 7), (c8, 8), (c9, 9), (c10, 10), (c11, 11), (c12, 12), (c13, 13), (c14, 14), (c15, 15)]: _debugf(' c%s: %s', (i, cond)) # We will return Or(*conds) conds = [] def pr(count): _debugf(' case %s: %s', (count, conds[-1])) conds += [And(m*n*s*t != 0, bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 1 pr(1) conds += [And(Eq(u, v), Eq(bstar, 0), cstar.is_positive is True, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c12)] # 2 pr(2) conds += [And(Eq(p, q), Eq(cstar, 0), bstar.is_positive is True, omega.is_positive is True, re(mu) < 1, c1, c2, c3, c10)] # 3 pr(3) conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), sigma.is_positive is True, omega.is_positive is True, re(mu) < 1, re(rho) < 1, Ne(sigma, omega), c1, c2, c3)] # 4 pr(4) conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), sigma.is_positive is True, omega.is_positive is True, re(mu + rho) < 1, Ne(omega, sigma), c1, c2, c3)] # 5 pr(5) conds += [And(p > q, s.is_positive is True, bstar.is_positive is True, cstar >= 0, c1, c2, c3, c5, c10, c13)] # 6 pr(6) conds += [And(p < q, t.is_positive is True, bstar.is_positive is True, cstar >= 0, c1, c2, c3, c4, c10, c13)] # 7 pr(7) conds += [And(u > v, m.is_positive is True, cstar.is_positive is True, bstar >= 0, c1, c2, c3, c7, c11, c12)] # 8 pr(8) conds += [And(u < v, n.is_positive is True, cstar.is_positive is True, bstar >= 0, c1, c2, c3, c6, c11, c12)] # 9 pr(9) conds += [And(p > q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c5, c13)] # 10 pr(10) conds += [And(p < q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c4, c13)] # 11 pr(11) conds += [And(Eq(p, q), u > v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, re(mu) < 1, c1, c2, c3, c7, c11)] # 12 pr(12) conds += [And(Eq(p, q), u < v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, re(mu) < 1, c1, c2, c3, c6, c11)] # 13 pr(13) conds += [And(p < q, u > v, bstar >= 0, cstar >= 0, c1, c2, c3, c4, c7, c11, c13)] # 14 pr(14) conds += [And(p > q, u < v, bstar >= 0, cstar >= 0, c1, c2, c3, c5, c6, c11, c13)] # 15 pr(15) conds += [And(p > q, u > v, bstar >= 0, cstar >= 0, c1, c2, c3, c5, c7, c8, c11, c13, c14)] # 16 pr(16) conds += [And(p < q, u < v, bstar >= 0, cstar >= 0, c1, c2, c3, c4, c6, c9, c11, c13, c14)] # 17 pr(17) conds += [And(Eq(t, 0), s.is_positive is True, bstar.is_positive is True, phi.is_positive is True, c1, c2, c10)] # 18 pr(18) conds += [And(Eq(s, 0), t.is_positive is True, bstar.is_positive is True, phi.is_negative is True, c1, c3, c10)] # 19 pr(19) conds += [And(Eq(n, 0), m.is_positive is True, cstar.is_positive is True, phi.is_negative is True, c1, c2, c12)] # 20 pr(20) conds += [And(Eq(m, 0), n.is_positive is True, cstar.is_positive is True, phi.is_positive is True, c1, c3, c12)] # 21 pr(21) conds += [And(Eq(s*t, 0), bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 22 pr(22) conds += [And(Eq(m*n, 0), bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 23 pr(23) # The following case is from [Luke1969]. As far as I can tell, it is *not* # covered by Prudnikov's. # Let G1 and G2 be the two G-functions. Suppose the integral exists from # 0 to a > 0 (this is easy the easy part), that G1 is exponential decay at # infinity, and that the mellin transform of G2 exists. # Then the integral exists. mt1_exists = _check_antecedents_1(g1, x, helper=True) mt2_exists = _check_antecedents_1(g2, x, helper=True) conds += [And(mt2_exists, Eq(t, 0), u < s, bstar.is_positive is True, c10, c1, c2, c3)] pr('E1') conds += [And(mt2_exists, Eq(s, 0), v < t, bstar.is_positive is True, c10, c1, c2, c3)] pr('E2') conds += [And(mt1_exists, Eq(n, 0), p < m, cstar.is_positive is True, c12, c1, c2, c3)] pr('E3') conds += [And(mt1_exists, Eq(m, 0), q < n, cstar.is_positive is True, c12, c1, c2, c3)] pr('E4') # Let's short-circuit if this worked ... # the rest is corner-cases and terrible to read. r = Or(*conds) if _eval_cond(r) != False: return r conds += [And(m + n > p, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, Abs(unbranched_argument(omega)) < (m + n - p + 1)*pi, c1, c2, c10, c14, c15)] # 24 pr(24) conds += [And(m + n > q, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, Abs(unbranched_argument(omega)) < (m + n - q + 1)*pi, c1, c3, c10, c14, c15)] # 25 pr(25) conds += [And(Eq(p, q - 1), Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), c1, c2, c10, c14, c15)] # 26 pr(26) conds += [And(Eq(p, q + 1), Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), c1, c3, c10, c14, c15)] # 27 pr(27) conds += [And(p < q - 1, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), Abs(unbranched_argument(omega)) < (m + n - p + 1)*pi, c1, c2, c10, c14, c15)] # 28 pr(28) conds += [And( p > q + 1, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < Abs(unbranched_argument(omega)), Abs(unbranched_argument(omega)) < (m + n - q + 1)*pi, c1, c3, c10, c14, c15)] # 29 pr(29) conds += [And(Eq(n, 0), Eq(phi, 0), s + t > 0, m.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, Abs(unbranched_argument(sigma)) < (s + t - u + 1)*pi, c1, c2, c12, c14, c15)] # 30 pr(30) conds += [And(Eq(m, 0), Eq(phi, 0), s + t > v, n.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, Abs(unbranched_argument(sigma)) < (s + t - v + 1)*pi, c1, c3, c12, c14, c15)] # 31 pr(31) conds += [And(Eq(n, 0), Eq(phi, 0), Eq(u, v - 1), m.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)), Abs(unbranched_argument(sigma)) < (bstar + 1)*pi, c1, c2, c12, c14, c15)] # 32 pr(32) conds += [And(Eq(m, 0), Eq(phi, 0), Eq(u, v + 1), n.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)), Abs(unbranched_argument(sigma)) < (bstar + 1)*pi, c1, c3, c12, c14, c15)] # 33 pr(33) conds += [And( Eq(n, 0), Eq(phi, 0), u < v - 1, m.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)), Abs(unbranched_argument(sigma)) < (s + t - u + 1)*pi, c1, c2, c12, c14, c15)] # 34 pr(34) conds += [And( Eq(m, 0), Eq(phi, 0), u > v + 1, n.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < Abs(unbranched_argument(sigma)), Abs(unbranched_argument(sigma)) < (s + t - v + 1)*pi, c1, c3, c12, c14, c15)] # 35 pr(35) return Or(*conds) # NOTE An alternative, but as far as I can tell weaker, set of conditions # can be found in [L, section 5.6.2]. def _int0oo(g1, g2, x): """ Express integral from zero to infinity g1*g2 using a G function, assuming the necessary conditions are fulfilled. Examples ======== >>> from sympy.integrals.meijerint import _int0oo >>> from sympy.abc import s, t, m >>> from sympy import meijerg, S >>> g1 = meijerg([], [], [-S(1)/2, 0], [], s**2*t/4) >>> g2 = meijerg([], [], [m/2], [-m/2], t/4) >>> _int0oo(g1, g2, t) 4*meijerg(((0, 1/2), ()), ((m/2,), (-m/2,)), s**(-2))/s**2 """ # See: [L, section 5.6.2, equation (1)] eta, _ = _get_coeff_exp(g1.argument, x) omega, _ = _get_coeff_exp(g2.argument, x) def neg(l): return [-x for x in l] a1 = neg(g1.bm) + list(g2.an) a2 = list(g2.aother) + neg(g1.bother) b1 = neg(g1.an) + list(g2.bm) b2 = list(g2.bother) + neg(g1.aother) return meijerg(a1, a2, b1, b2, omega/eta)/eta def _rewrite_inversion(fac, po, g, x): """ Absorb ``po`` == x**s into g. """ _, s = _get_coeff_exp(po, x) a, b = _get_coeff_exp(g.argument, x) def tr(l): return [t + s/b for t in l] from sympy.simplify import powdenest return (powdenest(fac/a**(s/b), polar=True), meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), g.argument)) def _check_antecedents_inversion(g, x): """ Check antecedents for the laplace inversion integral. """ _debug('Checking antecedents for inversion:') z = g.argument _, e = _get_coeff_exp(z, x) if e < 0: _debug(' Flipping G.') # We want to assume that argument gets large as |x| -> oo return _check_antecedents_inversion(_flip_g(g), x) def statement_half(a, b, c, z, plus): coeff, exponent = _get_coeff_exp(z, x) a *= exponent b *= coeff**c c *= exponent conds = [] wp = b*exp(S.ImaginaryUnit*re(c)*pi/2) wm = b*exp(-S.ImaginaryUnit*re(c)*pi/2) if plus: w = wp else: w = wm conds += [And(Or(Eq(b, 0), re(c) <= 0), re(a) <= -1)] conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) < 0)] conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) <= 0, re(a) <= -1)] return Or(*conds) def statement(a, b, c, z): """ Provide a convergence statement for z**a * exp(b*z**c), c/f sphinx docs. """ return And(statement_half(a, b, c, z, True), statement_half(a, b, c, z, False)) # Notations from [L], section 5.7-10 m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) tau = m + n - p nu = q - m - n rho = (tau - nu)/2 sigma = q - p if sigma == 1: epsilon = S.Half elif sigma > 1: epsilon = 1 else: epsilon = S.NaN theta = ((1 - sigma)/2 + Add(*g.bq) - Add(*g.ap))/sigma delta = g.delta _debugf(' m=%s, n=%s, p=%s, q=%s, tau=%s, nu=%s, rho=%s, sigma=%s', (m, n, p, q, tau, nu, rho, sigma)) _debugf(' epsilon=%s, theta=%s, delta=%s', (epsilon, theta, delta)) # First check if the computation is valid. if not (g.delta >= e/2 or (p >= 1 and p >= q)): _debug(' Computation not valid for these parameters.') return False # Now check if the inversion integral exists. # Test "condition A" for a, b in itertools.product(g.an, g.bm): if (a - b).is_integer and a > b: _debug(' Not a valid G function.') return False # There are two cases. If p >= q, we can directly use a slater expansion # like [L], 5.2 (11). Note in particular that the asymptotics of such an # expansion even hold when some of the parameters differ by integers, i.e. # the formula itself would not be valid! (b/c G functions are cts. in their # parameters) # When p < q, we need to use the theorems of [L], 5.10. if p >= q: _debug(' Using asymptotic Slater expansion.') return And(*[statement(a - 1, 0, 0, z) for a in g.an]) def E(z): return And(*[statement(a - 1, 0, 0, z) for a in g.an]) def H(z): return statement(theta, -sigma, 1/sigma, z) def Hp(z): return statement_half(theta, -sigma, 1/sigma, z, True) def Hm(z): return statement_half(theta, -sigma, 1/sigma, z, False) # [L], section 5.10 conds = [] # Theorem 1 -- p < q from test above conds += [And(1 <= n, 1 <= m, rho*pi - delta >= pi/2, delta > 0, E(z*exp(S.ImaginaryUnit*pi*(nu + 1))))] # Theorem 2, statements (2) and (3) conds += [And(p + 1 <= m, m + 1 <= q, delta > 0, delta < pi/2, n == 0, (m - p + 1)*pi - delta >= pi/2, Hp(z*exp(S.ImaginaryUnit*pi*(q - m))), Hm(z*exp(-S.ImaginaryUnit*pi*(q - m))))] # Theorem 2, statement (5) -- p < q from test above conds += [And(m == q, n == 0, delta > 0, (sigma + epsilon)*pi - delta >= pi/2, H(z))] # Theorem 3, statements (6) and (7) conds += [And(Or(And(p <= q - 2, 1 <= tau, tau <= sigma/2), And(p + 1 <= m + n, m + n <= (p + q)/2)), delta > 0, delta < pi/2, (tau + 1)*pi - delta >= pi/2, Hp(z*exp(S.ImaginaryUnit*pi*nu)), Hm(z*exp(-S.ImaginaryUnit*pi*nu)))] # Theorem 4, statements (10) and (11) -- p < q from test above conds += [And(1 <= m, rho > 0, delta > 0, delta + rho*pi < pi/2, (tau + epsilon)*pi - delta >= pi/2, Hp(z*exp(S.ImaginaryUnit*pi*nu)), Hm(z*exp(-S.ImaginaryUnit*pi*nu)))] # Trivial case conds += [m == 0] # TODO # Theorem 5 is quite general # Theorem 6 contains special cases for q=p+1 return Or(*conds) def _int_inversion(g, x, t): """ Compute the laplace inversion integral, assuming the formula applies. """ b, a = _get_coeff_exp(g.argument, x) C, g = _inflate_fox_h(meijerg(g.an, g.aother, g.bm, g.bother, b/t**a), -a) return C/t*g #################################################################### # Finally, the real meat. #################################################################### _lookup_table = None @cacheit @timeit def _rewrite_single(f, x, recursive=True): """ Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) or (a, ()). Returns a list of tuples (C, s, G) and a condition cond. Returns None on failure. """ from .transforms import (mellin_transform, inverse_mellin_transform, IntegralTransformError, MellinTransformStripError) global _lookup_table if not _lookup_table: _lookup_table = {} _create_lookup_table(_lookup_table) if isinstance(f, meijerg): coeff, m = factor(f.argument, x).as_coeff_mul(x) if len(m) > 1: return None m = m[0] if m.is_Pow: if m.base != x or not m.exp.is_Rational: return None elif m != x: return None return [(1, 0, meijerg(f.an, f.aother, f.bm, f.bother, coeff*m))], True f_ = f f = f.subs(x, z) t = _mytype(f, z) if t in _lookup_table: l = _lookup_table[t] for formula, terms, cond, hint in l: subs = f.match(formula, old=True) if subs: subs_ = {} for fro, to in subs.items(): subs_[fro] = unpolarify(polarify(to, lift=True), exponents_only=True) subs = subs_ if not isinstance(hint, bool): hint = hint.subs(subs) if hint == False: continue if not isinstance(cond, (bool, BooleanAtom)): cond = unpolarify(cond.subs(subs)) if _eval_cond(cond) == False: continue if not isinstance(terms, list): terms = terms(subs) res = [] for fac, g in terms: r1 = _get_coeff_exp(unpolarify(fac.subs(subs).subs(z, x), exponents_only=True), x) try: g = g.subs(subs).subs(z, x) except ValueError: continue # NOTE these substitutions can in principle introduce oo, # zoo and other absurdities. It shouldn't matter, # but better be safe. if Tuple(*(r1 + (g,))).has(S.Infinity, S.ComplexInfinity, S.NegativeInfinity): continue g = meijerg(g.an, g.aother, g.bm, g.bother, unpolarify(g.argument, exponents_only=True)) res.append(r1 + (g,)) if res: return res, cond # try recursive mellin transform if not recursive: return None _debug('Trying recursive Mellin transform method.') def my_imt(F, s, x, strip): """ Calling simplify() all the time is slow and not helpful, since most of the time it only factors things in a way that has to be un-done anyway. But sometimes it can remove apparent poles. """ # XXX should this be in inverse_mellin_transform? try: return inverse_mellin_transform(F, s, x, strip, as_meijerg=True, needeval=True) except MellinTransformStripError: from sympy.simplify import simplify return inverse_mellin_transform( simplify(cancel(expand(F))), s, x, strip, as_meijerg=True, needeval=True) f = f_ s = _dummy('s', 'rewrite-single', f) # to avoid infinite recursion, we have to force the two g functions case def my_integrator(f, x): r = _meijerint_definite_4(f, x, only_double=True) if r is not None: from sympy.simplify import hyperexpand res, cond = r res = _my_unpolarify(hyperexpand(res, rewrite='nonrepsmall')) return Piecewise((res, cond), (Integral(f, (x, S.Zero, S.Infinity)), True)) return Integral(f, (x, S.Zero, S.Infinity)) try: F, strip, _ = mellin_transform(f, x, s, integrator=my_integrator, simplify=False, needeval=True) g = my_imt(F, s, x, strip) except IntegralTransformError: g = None if g is None: # We try to find an expression by analytic continuation. # (also if the dummy is already in the expression, there is no point in # putting in another one) a = _dummy_('a', 'rewrite-single') if a not in f.free_symbols and _is_analytic(f, x): try: F, strip, _ = mellin_transform(f.subs(x, a*x), x, s, integrator=my_integrator, needeval=True, simplify=False) g = my_imt(F, s, x, strip).subs(a, 1) except IntegralTransformError: g = None if g is None or g.has(S.Infinity, S.NaN, S.ComplexInfinity): _debug('Recursive Mellin transform failed.') return None args = Add.make_args(g) res = [] for f in args: c, m = f.as_coeff_mul(x) if len(m) > 1: raise NotImplementedError('Unexpected form...') g = m[0] a, b = _get_coeff_exp(g.argument, x) res += [(c, 0, meijerg(g.an, g.aother, g.bm, g.bother, unpolarify(polarify( a, lift=True), exponents_only=True) *x**b))] _debug('Recursive Mellin transform worked:', g) return res, True def _rewrite1(f, x, recursive=True): """ Try to rewrite ``f`` using a (sum of) single G functions with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of ``x``. and po = x**s. Here g is a result from _rewrite_single. Return None on failure. """ fac, po, g = _split_mul(f, x) g = _rewrite_single(g, x, recursive) if g: return fac, po, g[0], g[1] def _rewrite2(f, x): """ Try to rewrite ``f`` as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. Here g1 and g2 are results of _rewrite_single. Returns None on failure. """ fac, po, g = _split_mul(f, x) if any(_rewrite_single(expr, x, False) is None for expr in _mul_args(g)): return None l = _mul_as_two_parts(g) if not l: return None l = list(ordered(l, [ lambda p: max(len(_exponents(p[0], x)), len(_exponents(p[1], x))), lambda p: max(len(_functions(p[0], x)), len(_functions(p[1], x))), lambda p: max(len(_find_splitting_points(p[0], x)), len(_find_splitting_points(p[1], x)))])) for recursive, (fac1, fac2) in itertools.product((False, True), l): g1 = _rewrite_single(fac1, x, recursive) g2 = _rewrite_single(fac2, x, recursive) if g1 and g2: cond = And(g1[1], g2[1]) if cond != False: return fac, po, g1[0], g2[0], cond def meijerint_indefinite(f, x): """ Compute an indefinite integral of ``f`` by rewriting it as a G function. Examples ======== >>> from sympy.integrals.meijerint import meijerint_indefinite >>> from sympy import sin >>> from sympy.abc import x >>> meijerint_indefinite(sin(x), x) -cos(x) """ f = sympify(f) results = [] for a in sorted(_find_splitting_points(f, x) | {S.Zero}, key=default_sort_key): res = _meijerint_indefinite_1(f.subs(x, x + a), x) if not res: continue res = res.subs(x, x - a) if _has(res, hyper, meijerg): results.append(res) else: return res if f.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_indefinite( _rewrite_hyperbolics_as_exp(f), x) if rv: if not isinstance(rv, list): from sympy.simplify.radsimp import collect return collect(factor_terms(rv), rv.atoms(exp)) results.extend(rv) if results: return next(ordered(results)) def _meijerint_indefinite_1(f, x): """ Helper that does not attempt any substitution. """ _debug('Trying to compute the indefinite integral of', f, 'wrt', x) from sympy.simplify import hyperexpand, powdenest gs = _rewrite1(f, x) if gs is None: # Note: the code that calls us will do expand() and try again return None fac, po, gl, cond = gs _debug(' could rewrite:', gs) res = S.Zero for C, s, g in gl: a, b = _get_coeff_exp(g.argument, x) _, c = _get_coeff_exp(po, x) c += s # we do a substitution t=a*x**b, get integrand fac*t**rho*g fac_ = fac * C * x**(1 + c) / b rho = (c + 1)/b # we now use t**rho*G(params, t) = G(params + rho, t) # [L, page 150, equation (4)] # and integral G(params, t) dt = G(1, params+1, 0, t) # (or a similar expression with 1 and 0 exchanged ... pick the one # which yields a well-defined function) # [R, section 5] # (Note that this dummy will immediately go away again, so we # can safely pass S.One for ``expr``.) t = _dummy('t', 'meijerint-indefinite', S.One) def tr(p): return [a + rho for a in p] if any(b.is_integer and (b <= 0) == True for b in tr(g.bm)): r = -meijerg( list(g.an), list(g.aother) + [1-rho], list(g.bm) + [-rho], list(g.bother), t) else: r = meijerg( list(g.an) + [1-rho], list(g.aother), list(g.bm), list(g.bother) + [-rho], t) # The antiderivative is most often expected to be defined # in the neighborhood of x = 0. if b.is_extended_nonnegative and not f.subs(x, 0).has(S.NaN, S.ComplexInfinity): place = 0 # Assume we can expand at zero else: place = None r = hyperexpand(r.subs(t, a*x**b), place=place) # now substitute back # Note: we really do want the powers of x to combine. res += powdenest(fac_*r, polar=True) def _clean(res): """This multiplies out superfluous powers of x we created, and chops off constants: >> _clean(x*(exp(x)/x - 1/x) + 3) exp(x) cancel is used before mul_expand since it is possible for an expression to have an additive constant that does not become isolated with simple expansion. Such a situation was identified in issue 6369: Examples ======== >>> from sympy import sqrt, cancel >>> from sympy.abc import x >>> a = sqrt(2*x + 1) >>> bad = (3*x*a**5 + 2*x - a**5 + 1)/a**2 >>> bad.expand().as_independent(x)[0] 0 >>> cancel(bad).expand().as_independent(x)[0] 1 """ res = expand_mul(cancel(res), deep=False) return Add._from_args(res.as_coeff_add(x)[1]) res = piecewise_fold(res, evaluate=None) if res.is_Piecewise: newargs = [] for e, c in res.args: e = _my_unpolarify(_clean(e)) newargs += [(e, c)] res = Piecewise(*newargs, evaluate=False) else: res = _my_unpolarify(_clean(res)) return Piecewise((res, _my_unpolarify(cond)), (Integral(f, x), True)) @timeit def meijerint_definite(f, x, a, b): """ Integrate ``f`` over the interval [``a``, ``b``], by rewriting it as a product of two G functions, or as a single G function. Return res, cond, where cond are convergence conditions. Examples ======== >>> from sympy.integrals.meijerint import meijerint_definite >>> from sympy import exp, oo >>> from sympy.abc import x >>> meijerint_definite(exp(-x**2), x, -oo, oo) (sqrt(pi), True) This function is implemented as a succession of functions meijerint_definite, _meijerint_definite_2, _meijerint_definite_3, _meijerint_definite_4. Each function in the list calls the next one (presumably) several times. This means that calling meijerint_definite can be very costly. """ # This consists of three steps: # 1) Change the integration limits to 0, oo # 2) Rewrite in terms of G functions # 3) Evaluate the integral # # There are usually several ways of doing this, and we want to try all. # This function does (1), calls _meijerint_definite_2 for step (2). _debugf('Integrating %s wrt %s from %s to %s.', (f, x, a, b)) f = sympify(f) if f.has(DiracDelta): _debug('Integrand has DiracDelta terms - giving up.') return None if f.has(SingularityFunction): _debug('Integrand has Singularity Function terms - giving up.') return None f_, x_, a_, b_ = f, x, a, b # Let's use a dummy in case any of the boundaries has x. d = Dummy('x') f = f.subs(x, d) x = d if a == b: return (S.Zero, True) results = [] if a is S.NegativeInfinity and b is not S.Infinity: return meijerint_definite(f.subs(x, -x), x, -b, -a) elif a is S.NegativeInfinity: # Integrating -oo to oo. We need to find a place to split the integral. _debug(' Integrating -oo to +oo.') innermost = _find_splitting_points(f, x) _debug(' Sensible splitting points:', innermost) for c in sorted(innermost, key=default_sort_key, reverse=True) + [S.Zero]: _debug(' Trying to split at', c) if not c.is_extended_real: _debug(' Non-real splitting point.') continue res1 = _meijerint_definite_2(f.subs(x, x + c), x) if res1 is None: _debug(' But could not compute first integral.') continue res2 = _meijerint_definite_2(f.subs(x, c - x), x) if res2 is None: _debug(' But could not compute second integral.') continue res1, cond1 = res1 res2, cond2 = res2 cond = _condsimp(And(cond1, cond2)) if cond == False: _debug(' But combined condition is always false.') continue res = res1 + res2 return res, cond elif a is S.Infinity: res = meijerint_definite(f, x, b, S.Infinity) return -res[0], res[1] elif (a, b) == (S.Zero, S.Infinity): # This is a common case - try it directly first. res = _meijerint_definite_2(f, x) if res: if _has(res[0], meijerg): results.append(res) else: return res else: if b is S.Infinity: for split in _find_splitting_points(f, x): if (a - split >= 0) == True: _debugf('Trying x -> x + %s', split) res = _meijerint_definite_2(f.subs(x, x + split) *Heaviside(x + split - a), x) if res: if _has(res[0], meijerg): results.append(res) else: return res f = f.subs(x, x + a) b = b - a a = 0 if b is not S.Infinity: phi = exp(S.ImaginaryUnit*arg(b)) b = Abs(b) f = f.subs(x, phi*x) f *= Heaviside(b - x)*phi b = S.Infinity _debug('Changed limits to', a, b) _debug('Changed function to', f) res = _meijerint_definite_2(f, x) if res: if _has(res[0], meijerg): results.append(res) else: return res if f_.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_definite( _rewrite_hyperbolics_as_exp(f_), x_, a_, b_) if rv: if not isinstance(rv, list): from sympy.simplify.radsimp import collect rv = (collect(factor_terms(rv[0]), rv[0].atoms(exp)),) + rv[1:] return rv results.extend(rv) if results: return next(ordered(results)) def _guess_expansion(f, x): """ Try to guess sensible rewritings for integrand f(x). """ res = [(f, 'original integrand')] orig = res[-1][0] saw = {orig} expanded = expand_mul(orig) if expanded not in saw: res += [(expanded, 'expand_mul')] saw.add(expanded) expanded = expand(orig) if expanded not in saw: res += [(expanded, 'expand')] saw.add(expanded) if orig.has(TrigonometricFunction, HyperbolicFunction): expanded = expand_mul(expand_trig(orig)) if expanded not in saw: res += [(expanded, 'expand_trig, expand_mul')] saw.add(expanded) if orig.has(cos, sin): from sympy.simplify.fu import sincos_to_sum reduced = sincos_to_sum(orig) if reduced not in saw: res += [(reduced, 'trig power reduction')] saw.add(reduced) return res def _meijerint_definite_2(f, x): """ Try to integrate f dx from zero to infinity. The body of this function computes various 'simplifications' f1, f2, ... of f (e.g. by calling expand_mul(), trigexpand() - see _guess_expansion) and calls _meijerint_definite_3 with each of these in succession. If _meijerint_definite_3 succeeds with any of the simplified functions, returns this result. """ # This function does preparation for (2), calls # _meijerint_definite_3 for (2) and (3) combined. # use a positive dummy - we integrate from 0 to oo # XXX if a nonnegative symbol is used there will be test failures dummy = _dummy('x', 'meijerint-definite2', f, positive=True) f = f.subs(x, dummy) x = dummy if f == 0: return S.Zero, True for g, explanation in _guess_expansion(f, x): _debug('Trying', explanation) res = _meijerint_definite_3(g, x) if res: return res def _meijerint_definite_3(f, x): """ Try to integrate f dx from zero to infinity. This function calls _meijerint_definite_4 to try to compute the integral. If this fails, it tries using linearity. """ res = _meijerint_definite_4(f, x) if res and res[1] != False: return res if f.is_Add: _debug('Expanding and evaluating all terms.') ress = [_meijerint_definite_4(g, x) for g in f.args] if all(r is not None for r in ress): conds = [] res = S.Zero for r, c in ress: res += r conds += [c] c = And(*conds) if c != False: return res, c def _my_unpolarify(f): return _eval_cond(unpolarify(f)) @timeit def _meijerint_definite_4(f, x, only_double=False): """ Try to integrate f dx from zero to infinity. Explanation =========== This function tries to apply the integration theorems found in literature, i.e. it tries to rewrite f as either one or a product of two G-functions. The parameter ``only_double`` is used internally in the recursive algorithm to disable trying to rewrite f as a single G-function. """ from sympy.simplify import hyperexpand # This function does (2) and (3) _debug('Integrating', f) # Try single G function. if not only_double: gs = _rewrite1(f, x, recursive=False) if gs is not None: fac, po, g, cond = gs _debug('Could rewrite as single G function:', fac, po, g) res = S.Zero for C, s, f in g: if C == 0: continue C, f = _rewrite_saxena_1(fac*C, po*x**s, f, x) res += C*_int0oo_1(f, x) cond = And(cond, _check_antecedents_1(f, x)) if cond == False: break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False.') else: _debug('Result before branch substitutions is:', res) return _my_unpolarify(hyperexpand(res)), cond # Try two G functions. gs = _rewrite2(f, x) if gs is not None: for full_pb in [False, True]: fac, po, g1, g2, cond = gs _debug('Could rewrite as two G functions:', fac, po, g1, g2) res = S.Zero for C1, s1, f1 in g1: for C2, s2, f2 in g2: r = _rewrite_saxena(fac*C1*C2, po*x**(s1 + s2), f1, f2, x, full_pb) if r is None: _debug('Non-rational exponents.') return C, f1_, f2_ = r _debug('Saxena subst for yielded:', C, f1_, f2_) cond = And(cond, _check_antecedents(f1_, f2_, x)) if cond == False: break res += C*_int0oo(f1_, f2_, x) else: continue break cond = _my_unpolarify(cond) if cond == False: _debugf('But cond is always False (full_pb=%s).', full_pb) else: _debugf('Result before branch substitutions is: %s', (res, )) if only_double: return res, cond return _my_unpolarify(hyperexpand(res)), cond def meijerint_inversion(f, x, t): r""" Compute the inverse laplace transform $\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx$, for real c larger than the real part of all singularities of ``f``. Note that ``t`` is always assumed real and positive. Return None if the integral does not exist or could not be evaluated. Examples ======== >>> from sympy.abc import x, t >>> from sympy.integrals.meijerint import meijerint_inversion >>> meijerint_inversion(1/x, x, t) Heaviside(t) """ f_ = f t_ = t t = Dummy('t', polar=True) # We don't want sqrt(t**2) = abs(t) etc f = f.subs(t_, t) _debug('Laplace-inverting', f) if not _is_analytic(f, x): _debug('But expression is not analytic.') return None # Exponentials correspond to shifts; we filter them out and then # shift the result later. If we are given an Add this will not # work, but the calling code will take care of that. shift = S.Zero if f.is_Mul: args = list(f.args) elif isinstance(f, exp): args = [f] else: args = None if args: newargs = [] exponentials = [] while args: arg = args.pop() if isinstance(arg, exp): arg2 = expand(arg) if arg2.is_Mul: args += arg2.args continue try: a, b = _get_coeff_exp(arg.args[0], x) except _CoeffExpValueError: b = 0 if b == 1: exponentials.append(a) else: newargs.append(arg) elif arg.is_Pow: arg2 = expand(arg) if arg2.is_Mul: args += arg2.args continue if x not in arg.base.free_symbols: try: a, b = _get_coeff_exp(arg.exp, x) except _CoeffExpValueError: b = 0 if b == 1: exponentials.append(a*log(arg.base)) newargs.append(arg) else: newargs.append(arg) shift = Add(*exponentials) f = Mul(*newargs) if x not in f.free_symbols: _debug('Expression consists of constant and exp shift:', f, shift) cond = Eq(im(shift), 0) if cond == False: _debug('but shift is nonreal, cannot be a Laplace transform') return None res = f*DiracDelta(t + shift) _debug('Result is a delta function, possibly conditional:', res, cond) # cond is True or Eq return Piecewise((res.subs(t, t_), cond)) gs = _rewrite1(f, x) if gs is not None: fac, po, g, cond = gs _debug('Could rewrite as single G function:', fac, po, g) res = S.Zero for C, s, f in g: C, f = _rewrite_inversion(fac*C, po*x**s, f, x) res += C*_int_inversion(f, x, t) cond = And(cond, _check_antecedents_inversion(f, x)) if cond == False: break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False.') else: _debug('Result before branch substitution:', res) from sympy.simplify import hyperexpand res = _my_unpolarify(hyperexpand(res)) if not res.has(Heaviside): res *= Heaviside(t) res = res.subs(t, t + shift) if not isinstance(cond, bool): cond = cond.subs(t, t + shift) from .transforms import InverseLaplaceTransform return Piecewise((res.subs(t, t_), cond), (InverseLaplaceTransform(f_.subs(t, t_), x, t_, None), True))