### The base class for all series from collections.abc import Callable from sympy.calculus.util import continuous_domain from sympy.concrete import Sum, Product from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import arity from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol from sympy.functions import atan2, zeta, frac, ceiling, floor, im from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational, Ne) from sympy.core.sympify import sympify from sympy.external import import_module from sympy.logic.boolalg import BooleanFunction from sympy.plotting.utils import _get_free_symbols, extract_solution from sympy.printing.latex import latex from sympy.printing.pycode import PythonCodePrinter from sympy.printing.precedence import precedence from sympy.sets.sets import Set, Interval, Union from sympy.simplify.simplify import nsimplify from sympy.utilities.exceptions import sympy_deprecation_warning from sympy.utilities.lambdify import lambdify from .intervalmath import interval import warnings class IntervalMathPrinter(PythonCodePrinter): """A printer to be used inside `plot_implicit` when `adaptive=True`, in which case the interval arithmetic module is going to be used, which requires the following edits. """ def _print_And(self, expr): PREC = precedence(expr) return " & ".join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Or(self, expr): PREC = precedence(expr) return " | ".join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _uniform_eval(f1, f2, *args, modules=None, force_real_eval=False, has_sum=False): """ Note: this is an experimental function, as such it is prone to changes. Please, do not use it in your code. """ np = import_module('numpy') def wrapper_func(func, *args): try: return complex(func(*args)) except (ZeroDivisionError, OverflowError): return complex(np.nan, np.nan) # NOTE: np.vectorize is much slower than numpy vectorized operations. # However, this modules must be able to evaluate functions also with # mpmath or sympy. wrapper_func = np.vectorize(wrapper_func, otypes=[complex]) def _eval_with_sympy(err=None): if f2 is None: msg = "Impossible to evaluate the provided numerical function" if err is None: msg += "." else: msg += "because the following exception was raised:\n" "{}: {}".format(type(err).__name__, err) raise RuntimeError(msg) if err: warnings.warn( "The evaluation with %s failed.\n" % ( "NumPy/SciPy" if not modules else modules) + "{}: {}\n".format(type(err).__name__, err) + "Trying to evaluate the expression with Sympy, but it might " "be a slow operation." ) return wrapper_func(f2, *args) if modules == "sympy": return _eval_with_sympy() try: return wrapper_func(f1, *args) except Exception as err: return _eval_with_sympy(err) def _adaptive_eval(f, x): """Evaluate f(x) with an adaptive algorithm. Post-process the result. If a symbolic expression is evaluated with SymPy, it might returns another symbolic expression, containing additions, ... Force evaluation to a float. Parameters ========== f : callable x : float """ np = import_module('numpy') y = f(x) if isinstance(y, Expr) and (not y.is_Number): y = y.evalf() y = complex(y) if y.imag > 1e-08: return np.nan return y.real def _get_wrapper_for_expr(ret): wrapper = "%s" if ret == "real": wrapper = "re(%s)" elif ret == "imag": wrapper = "im(%s)" elif ret == "abs": wrapper = "abs(%s)" elif ret == "arg": wrapper = "arg(%s)" return wrapper class BaseSeries: """Base class for the data objects containing stuff to be plotted. Notes ===== The backend should check if it supports the data series that is given. (e.g. TextBackend supports only LineOver1DRangeSeries). It is the backend responsibility to know how to use the class of data series that is given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). BaseSeries """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes # Different from is_contour as the colormap in backend will be # different is_interactive = False # An interactive series can update its data. is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics is_generic = False # Represent generic user-provided numerical data is_vector = False is_2Dvector = False is_3Dvector = False # Represents a 2D or 3D vector data series _N = 100 # default number of discretization points for uniform sampling. Each # subclass can set its number. def __init__(self, *args, **kwargs): kwargs = _set_discretization_points(kwargs.copy(), type(self)) # discretize the domain using only integer numbers self.only_integers = kwargs.get("only_integers", False) # represents the evaluation modules to be used by lambdify self.modules = kwargs.get("modules", None) # plot functions might create data series that might not be useful to # be shown on the legend, for example wireframe lines on 3D plots. self.show_in_legend = kwargs.get("show_in_legend", True) # line and surface series can show data with a colormap, hence a # colorbar is essential to understand the data. However, sometime it # is useful to hide it on series-by-series base. The following keyword # controls wheter the series should show a colorbar or not. self.colorbar = kwargs.get("colorbar", True) # Some series might use a colormap as default coloring. Setting this # attribute to False will inform the backends to use solid color. self.use_cm = kwargs.get("use_cm", False) # If True, the backend will attempt to render it on a polar-projection # axis, or using a polar discretization if a 3D plot is requested self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False)) # If True, the rendering will use points, not lines. self.is_point = kwargs.get("is_point", kwargs.get("point", False)) # some backend is able to render latex, other needs standard text self._label = self._latex_label = "" self._ranges = [] self._n = [ int(kwargs.get("n1", self._N)), int(kwargs.get("n2", self._N)), int(kwargs.get("n3", self._N)) ] self._scales = [ kwargs.get("xscale", "linear"), kwargs.get("yscale", "linear"), kwargs.get("zscale", "linear") ] # enable interactive widget plots self._params = kwargs.get("params", {}) if not isinstance(self._params, dict): raise TypeError("`params` must be a dictionary mapping symbols " "to numeric values.") if len(self._params) > 0: self.is_interactive = True # contains keyword arguments that will be passed to the rendering # function of the chosen plotting library self.rendering_kw = kwargs.get("rendering_kw", {}) # numerical transformation functions to be applied to the output data: # x, y, z (coordinates), p (parameter on parametric plots) self._tx = kwargs.get("tx", None) self._ty = kwargs.get("ty", None) self._tz = kwargs.get("tz", None) self._tp = kwargs.get("tp", None) if not all(callable(t) or (t is None) for t in [self._tx, self._ty, self._tz, self._tp]): raise TypeError("`tx`, `ty`, `tz`, `tp` must be functions.") # list of numerical functions representing the expressions to evaluate self._functions = [] # signature for the numerical functions self._signature = [] # some expressions don't like to be evaluated over complex data. # if that's the case, set this to True self._force_real_eval = kwargs.get("force_real_eval", None) # this attribute will eventually contain a dictionary with the # discretized ranges self._discretized_domain = None # wheter the series contains any interactive range, which is a range # where the minimum and maximum values can be changed with an # interactive widget self._interactive_ranges = False # NOTE: consider a generic summation, for example: # s = Sum(cos(pi * x), (x, 1, y)) # This gets lambdified to something: # sum(cos(pi*x) for x in range(1, y+1)) # Hence, y needs to be an integer, otherwise it raises: # TypeError: 'complex' object cannot be interpreted as an integer # This list will contains symbols that are upper bound to summations # or products self._needs_to_be_int = [] # a color function will be responsible to set the line/surface color # according to some logic. Each data series will et an appropriate # default value. self.color_func = None # NOTE: color_func usually receives numerical functions that are going # to be evaluated over the coordinates of the computed points (or the # discretized meshes). # However, if an expression is given to color_func, then it will be # lambdified with symbols in self._signature, and it will be evaluated # with the same data used to evaluate the plotted expression. self._eval_color_func_with_signature = False def _block_lambda_functions(self, *exprs): """Some data series can be used to plot numerical functions, others cannot. Execute this method inside the `__init__` to prevent the processing of numerical functions. """ if any(callable(e) for e in exprs): raise TypeError(type(self).__name__ + " requires a symbolic " "expression.") def _check_fs(self): """ Checks if there are enogh parameters and free symbols. """ exprs, ranges = self.expr, self.ranges params, label = self.params, self.label exprs = exprs if hasattr(exprs, "__iter__") else [exprs] if any(callable(e) for e in exprs): return # from the expression's free symbols, remove the ones used in # the parameters and the ranges fs = _get_free_symbols(exprs) fs = fs.difference(params.keys()) if ranges is not None: fs = fs.difference([r[0] for r in ranges]) if len(fs) > 0: raise ValueError( "Incompatible expression and parameters.\n" + "Expression: {}\n".format( (exprs, ranges, label) if ranges is not None else (exprs, label)) + "params: {}\n".format(params) + "Specify what these symbols represent: {}\n".format(fs) + "Are they ranges or parameters?" ) # verify that all symbols are known (they either represent plotting # ranges or parameters) range_symbols = [r[0] for r in ranges] for r in ranges: fs = set().union(*[e.free_symbols for e in r[1:]]) if any(t in fs for t in range_symbols): # ranges can't depend on each other, for example this are # not allowed: # (x, 0, y), (y, 0, 3) # (x, 0, y), (y, x + 2, 3) raise ValueError("Range symbols can't be included into " "minimum and maximum of a range. " "Received range: %s" % str(r)) if len(fs) > 0: self._interactive_ranges = True remaining_fs = fs.difference(params.keys()) if len(remaining_fs) > 0: raise ValueError( "Unkown symbols found in plotting range: %s. " % (r,) + "Are the following parameters? %s" % remaining_fs) def _create_lambda_func(self): """Create the lambda functions to be used by the uniform meshing strategy. Notes ===== The old sympy.plotting used experimental_lambdify. It created one lambda function each time an evaluation was requested. If that failed, it went on to create a different lambda function and evaluated it, and so on. This new module changes strategy: it creates right away the default lambda function as well as the backup one. The reason is that the series could be interactive, hence the numerical function will be evaluated multiple times. So, let's create the functions just once. This approach works fine for the majority of cases, in which the symbolic expression is relatively short, hence the lambdification is fast. If the expression is very long, this approach takes twice the time to create the lambda functions. Be aware of that! """ exprs = self.expr if hasattr(self.expr, "__iter__") else [self.expr] if not any(callable(e) for e in exprs): fs = _get_free_symbols(exprs) self._signature = sorted(fs, key=lambda t: t.name) # Generate a list of lambda functions, two for each expression: # 1. the default one. # 2. the backup one, in case of failures with the default one. self._functions = [] for e in exprs: # TODO: set cse=True once this issue is solved: # https://github.com/sympy/sympy/issues/24246 self._functions.append([ lambdify(self._signature, e, modules=self.modules), lambdify(self._signature, e, modules="sympy", dummify=True), ]) else: self._signature = sorted([r[0] for r in self.ranges], key=lambda t: t.name) self._functions = [(e, None) for e in exprs] # deal with symbolic color_func if isinstance(self.color_func, Expr): self.color_func = lambdify(self._signature, self.color_func) self._eval_color_func_with_signature = True def _update_range_value(self, t): """If the value of a plotting range is a symbolic expression, substitute the parameters in order to get a numerical value. """ if not self._interactive_ranges: return complex(t) return complex(t.subs(self.params)) def _create_discretized_domain(self): """Discretize the ranges for uniform meshing strategy. """ # NOTE: the goal is to create a dictionary stored in # self._discretized_domain, mapping symbols to a numpy array # representing the discretization discr_symbols = [] discretizations = [] # create a 1D discretization for i, r in enumerate(self.ranges): discr_symbols.append(r[0]) c_start = self._update_range_value(r[1]) c_end = self._update_range_value(r[2]) start = c_start.real if c_start.imag == c_end.imag == 0 else c_start end = c_end.real if c_start.imag == c_end.imag == 0 else c_end needs_integer_discr = self.only_integers or (r[0] in self._needs_to_be_int) d = BaseSeries._discretize(start, end, self.n[i], scale=self.scales[i], only_integers=needs_integer_discr) if ((not self._force_real_eval) and (not needs_integer_discr) and (d.dtype != "complex")): d = d + 1j * c_start.imag if needs_integer_discr: d = d.astype(int) discretizations.append(d) # create 2D or 3D self._create_discretized_domain_helper(discr_symbols, discretizations) def _create_discretized_domain_helper(self, discr_symbols, discretizations): """Create 2D or 3D discretized grids. Subclasses should override this method in order to implement a different behaviour. """ np = import_module('numpy') # discretization suitable for 2D line plots, 3D surface plots, # contours plots, vector plots # NOTE: why indexing='ij'? Because it produces consistent results with # np.mgrid. This is important as Mayavi requires this indexing # to correctly compute 3D streamlines. While VTK is able to compute # streamlines regardless of the indexing, with indexing='xy' it # produces "strange" results with "voids" into the # discretization volume. indexing='ij' solves the problem. # Also note that matplotlib 2D streamlines requires indexing='xy'. indexing = "xy" if self.is_3Dvector or (self.is_3Dsurface and self.is_implicit): indexing = "ij" meshes = np.meshgrid(*discretizations, indexing=indexing) self._discretized_domain = dict(zip(discr_symbols, meshes)) def _evaluate(self, cast_to_real=True): """Evaluation of the symbolic expression (or expressions) with the uniform meshing strategy, based on current values of the parameters. """ np = import_module('numpy') # create lambda functions if not self._functions: self._create_lambda_func() # create (or update) the discretized domain if (not self._discretized_domain) or self._interactive_ranges: self._create_discretized_domain() # ensure that discretized domains are returned with the proper order discr = [self._discretized_domain[s[0]] for s in self.ranges] args = self._aggregate_args() results = [] for f in self._functions: r = _uniform_eval(*f, *args) # the evaluation might produce an int/float. Need this correction. r = self._correct_shape(np.array(r), discr[0]) # sometime the evaluation is performed over arrays of type object. # hence, `result` might be of type object, which don't work well # with numpy real and imag functions. r = r.astype(complex) results.append(r) if cast_to_real: discr = [np.real(d.astype(complex)) for d in discr] return [*discr, *results] def _aggregate_args(self): """Create a list of arguments to be passed to the lambda function, sorted accoring to self._signature. """ args = [] for s in self._signature: if s in self._params.keys(): args.append( int(self._params[s]) if s in self._needs_to_be_int else self._params[s] if self._force_real_eval else complex(self._params[s])) else: args.append(self._discretized_domain[s]) return args @property def expr(self): """Return the expression (or expressions) of the series.""" return self._expr @expr.setter def expr(self, e): """Set the expression (or expressions) of the series.""" is_iter = hasattr(e, "__iter__") is_callable = callable(e) if not is_iter else any(callable(t) for t in e) if is_callable: self._expr = e else: self._expr = sympify(e) if not is_iter else Tuple(*e) # look for the upper bound of summations and products s = set() for e in self._expr.atoms(Sum, Product): for a in e.args[1:]: if isinstance(a[-1], Symbol): s.add(a[-1]) self._needs_to_be_int = list(s) # list of sympy functions that when lambdified, the corresponding # numpy functions don't like complex-type arguments pf = [ceiling, floor, atan2, frac, zeta] if self._force_real_eval is not True: check_res = [self._expr.has(f) for f in pf] self._force_real_eval = any(check_res) if self._force_real_eval and ((self.modules is None) or (isinstance(self.modules, str) and "numpy" in self.modules)): funcs = [f for f, c in zip(pf, check_res) if c] warnings.warn("NumPy is unable to evaluate with complex " "numbers some of the functions included in this " "symbolic expression: %s. " % funcs + "Hence, the evaluation will use real numbers. " "If you believe the resulting plot is incorrect, " "change the evaluation module by setting the " "`modules` keyword argument.") if self._functions: # update lambda functions self._create_lambda_func() @property def is_3D(self): flags3D = [self.is_3Dline, self.is_3Dsurface, self.is_3Dvector] return any(flags3D) @property def is_line(self): flagslines = [self.is_2Dline, self.is_3Dline] return any(flagslines) def _line_surface_color(self, prop, val): """This method enables back-compatibility with old sympy.plotting""" # NOTE: color_func is set inside the init method of the series. # If line_color/surface_color is not a callable, then color_func will # be set to None. setattr(self, prop, val) if callable(val) or isinstance(val, Expr): self.color_func = val setattr(self, prop, None) elif val is not None: self.color_func = None @property def line_color(self): return self._line_color @line_color.setter def line_color(self, val): self._line_surface_color("_line_color", val) @property def n(self): """Returns a list [n1, n2, n3] of numbers of discratization points. """ return self._n @n.setter def n(self, v): """Set the numbers of discretization points. ``v`` must be an int or a list. Let ``s`` be a series. Then: * to set the number of discretization points along the x direction (or first parameter): ``s.n = 10`` * to set the number of discretization points along the x and y directions (or first and second parameters): ``s.n = [10, 15]`` * to set the number of discretization points along the x, y and z directions: ``s.n = [10, 15, 20]`` The following is highly unreccomended, because it prevents the execution of necessary code in order to keep updated data: ``s.n[1] = 15`` """ if not hasattr(v, "__iter__"): self._n[0] = v else: self._n[:len(v)] = v if self._discretized_domain: # update the discretized domain self._create_discretized_domain() @property def params(self): """Get or set the current parameters dictionary. Parameters ========== p : dict * key: symbol associated to the parameter * val: the numeric value """ return self._params @params.setter def params(self, p): self._params = p def _post_init(self): exprs = self.expr if hasattr(self.expr, "__iter__") else [self.expr] if any(callable(e) for e in exprs) and self.params: raise TypeError("`params` was provided, hence an interactive plot " "is expected. However, interactive plots do not support " "user-provided numerical functions.") # if the expressions is a lambda function and no label has been # provided, then its better to do the following in order to avoid # suprises on the backend if any(callable(e) for e in exprs): if self._label == str(self.expr): self.label = "" self._check_fs() if hasattr(self, "adaptive") and self.adaptive and self.params: warnings.warn("`params` was provided, hence an interactive plot " "is expected. However, interactive plots do not support " "adaptive evaluation. Automatically switched to " "adaptive=False.") self.adaptive = False @property def scales(self): return self._scales @scales.setter def scales(self, v): if isinstance(v, str): self._scales[0] = v else: self._scales[:len(v)] = v @property def surface_color(self): return self._surface_color @surface_color.setter def surface_color(self, val): self._line_surface_color("_surface_color", val) @property def rendering_kw(self): return self._rendering_kw @rendering_kw.setter def rendering_kw(self, kwargs): if isinstance(kwargs, dict): self._rendering_kw = kwargs else: self._rendering_kw = {} if kwargs is not None: warnings.warn( "`rendering_kw` must be a dictionary, instead an " "object of type %s was received. " % type(kwargs) + "Automatically setting `rendering_kw` to an empty " "dictionary") @staticmethod def _discretize(start, end, N, scale="linear", only_integers=False): """Discretize a 1D domain. Returns ======= domain : np.ndarray with dtype=float or complex The domain's dtype will be float or complex (depending on the type of start/end) even if only_integers=True. It is left for the downstream code to perform further casting, if necessary. """ np = import_module('numpy') if only_integers is True: start, end = int(start), int(end) N = end - start + 1 if scale == "linear": return np.linspace(start, end, N) return np.geomspace(start, end, N) @staticmethod def _correct_shape(a, b): """Convert ``a`` to a np.ndarray of the same shape of ``b``. Parameters ========== a : int, float, complex, np.ndarray Usually, this is the result of a numerical evaluation of a symbolic expression. Even if a discretized domain was used to evaluate the function, the result can be a scalar (int, float, complex). Think for example to ``expr = Float(2)`` and ``f = lambdify(x, expr)``. No matter the shape of the numerical array representing x, the result of the evaluation will be a single value. b : np.ndarray It represents the correct shape that ``a`` should have. Returns ======= new_a : np.ndarray An array with the correct shape. """ np = import_module('numpy') if not isinstance(a, np.ndarray): a = np.array(a) if a.shape != b.shape: if a.shape == (): a = a * np.ones_like(b) else: a = a.reshape(b.shape) return a def eval_color_func(self, *args): """Evaluate the color function. Parameters ========== args : tuple Arguments to be passed to the coloring function. Can be coordinates or parameters or both. Notes ===== The backend will request the data series to generate the numerical data. Depending on the data series, either the data series itself or the backend will eventually execute this function to generate the appropriate coloring value. """ np = import_module('numpy') if self.color_func is None: # NOTE: with the line_color and surface_color attributes # (back-compatibility with the old sympy.plotting module) it is # possible to create a plot with a callable line_color (or # surface_color). For example: # p = plot(sin(x), line_color=lambda x, y: -y) # This creates a ColoredLineOver1DRangeSeries with line_color=None # and color_func=lambda x, y: -y, which efffectively is a # parametric series. Later we could change it to a string value: # p[0].line_color = "red" # However, this sets ine_color="red" and color_func=None, but the # series is still ColoredLineOver1DRangeSeries (a parametric # series), which will render using a color_func... warnings.warn("This is likely not the result you were " "looking for. Please, re-execute the plot command, this time " "with the appropriate an appropriate value to line_color " "or surface_color.") return np.ones_like(args[0]) if self._eval_color_func_with_signature: args = self._aggregate_args() color = self.color_func(*args) _re, _im = np.real(color), np.imag(color) _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan return _re nargs = arity(self.color_func) if nargs == 1: if self.is_2Dline and self.is_parametric: if len(args) == 2: # ColoredLineOver1DRangeSeries return self._correct_shape(self.color_func(args[0]), args[0]) # Parametric2DLineSeries return self._correct_shape(self.color_func(args[2]), args[2]) elif self.is_3Dline and self.is_parametric: return self._correct_shape(self.color_func(args[3]), args[3]) elif self.is_3Dsurface and self.is_parametric: return self._correct_shape(self.color_func(args[3]), args[3]) return self._correct_shape(self.color_func(args[0]), args[0]) elif nargs == 2: if self.is_3Dsurface and self.is_parametric: return self._correct_shape(self.color_func(*args[3:]), args[3]) return self._correct_shape(self.color_func(*args[:2]), args[0]) return self._correct_shape(self.color_func(*args[:nargs]), args[0]) def get_data(self): """Compute and returns the numerical data. The number of parameters returned by this method depends on the specific instance. If ``s`` is the series, make sure to read ``help(s.get_data)`` to understand what it returns. """ raise NotImplementedError def _get_wrapped_label(self, label, wrapper): """Given a latex representation of an expression, wrap it inside some characters. Matplotlib needs "$%s%$", K3D-Jupyter needs "%s". """ return wrapper % label def get_label(self, use_latex=False, wrapper="$%s$"): """Return the label to be used to display the expression. Parameters ========== use_latex : bool If False, the string representation of the expression is returned. If True, the latex representation is returned. wrapper : str The backend might need the latex representation to be wrapped by some characters. Default to ``"$%s$"``. Returns ======= label : str """ if use_latex is False: return self._label if self._label == str(self.expr): # when the backend requests a latex label and user didn't provide # any label return self._get_wrapped_label(self._latex_label, wrapper) return self._latex_label @property def label(self): return self.get_label() @label.setter def label(self, val): """Set the labels associated to this series.""" # NOTE: the init method of any series requires a label. If the user do # not provide it, the preprocessing function will set label=None, which # informs the series to initialize two attributes: # _label contains the string representation of the expression. # _latex_label contains the latex representation of the expression. self._label = self._latex_label = val @property def ranges(self): return self._ranges @ranges.setter def ranges(self, val): new_vals = [] for v in val: if v is not None: new_vals.append(tuple([sympify(t) for t in v])) self._ranges = new_vals def _apply_transform(self, *args): """Apply transformations to the results of numerical evaluation. Parameters ========== args : tuple Results of numerical evaluation. Returns ======= transformed_args : tuple Tuple containing the transformed results. """ t = lambda x, transform: x if transform is None else transform(x) x, y, z = None, None, None if len(args) == 2: x, y = args return t(x, self._tx), t(y, self._ty) elif (len(args) == 3) and isinstance(self, Parametric2DLineSeries): x, y, u = args return (t(x, self._tx), t(y, self._ty), t(u, self._tp)) elif len(args) == 3: x, y, z = args return t(x, self._tx), t(y, self._ty), t(z, self._tz) elif (len(args) == 4) and isinstance(self, Parametric3DLineSeries): x, y, z, u = args return (t(x, self._tx), t(y, self._ty), t(z, self._tz), t(u, self._tp)) elif len(args) == 4: # 2D vector plot x, y, u, v = args return ( t(x, self._tx), t(y, self._ty), t(u, self._tx), t(v, self._ty) ) elif (len(args) == 5) and isinstance(self, ParametricSurfaceSeries): x, y, z, u, v = args return (t(x, self._tx), t(y, self._ty), t(z, self._tz), u, v) elif (len(args) == 6) and self.is_3Dvector: # 3D vector plot x, y, z, u, v, w = args return ( t(x, self._tx), t(y, self._ty), t(z, self._tz), t(u, self._tx), t(v, self._ty), t(w, self._tz) ) elif len(args) == 6: # complex plot x, y, _abs, _arg, img, colors = args return ( x, y, t(_abs, self._tz), _arg, img, colors) return args def _str_helper(self, s): pre, post = "", "" if self.is_interactive: pre = "interactive " post = " and parameters " + str(tuple(self.params.keys())) return pre + s + post def _detect_poles_numerical_helper(x, y, eps=0.01, expr=None, symb=None, symbolic=False): """Compute the steepness of each segment. If it's greater than a threshold, set the right-point y-value non NaN and record the corresponding x-location for further processing. Returns ======= x : np.ndarray Unchanged x-data. yy : np.ndarray Modified y-data with NaN values. """ np = import_module('numpy') yy = y.copy() threshold = np.pi / 2 - eps for i in range(len(x) - 1): dx = x[i + 1] - x[i] dy = abs(y[i + 1] - y[i]) angle = np.arctan(dy / dx) if abs(angle) >= threshold: yy[i + 1] = np.nan return x, yy def _detect_poles_symbolic_helper(expr, symb, start, end): """Attempts to compute symbolic discontinuities. Returns ======= pole : list List of symbolic poles, possibily empty. """ poles = [] interval = Interval(nsimplify(start), nsimplify(end)) res = continuous_domain(expr, symb, interval) res = res.simplify() if res == interval: pass elif (isinstance(res, Union) and all(isinstance(t, Interval) for t in res.args)): poles = [] for s in res.args: if s.left_open: poles.append(s.left) if s.right_open: poles.append(s.right) poles = list(set(poles)) else: raise ValueError( f"Could not parse the following object: {res} .\n" "Please, submit this as a bug. Consider also to set " "`detect_poles=True`." ) return poles ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 _N = 1000 def __init__(self, **kwargs): super().__init__(**kwargs) self.steps = kwargs.get("steps", False) self.is_point = kwargs.get("is_point", kwargs.get("point", False)) self.is_filled = kwargs.get("is_filled", kwargs.get("fill", True)) self.adaptive = kwargs.get("adaptive", False) self.depth = kwargs.get('depth', 12) self.use_cm = kwargs.get("use_cm", False) self.color_func = kwargs.get("color_func", None) self.line_color = kwargs.get("line_color", None) self.detect_poles = kwargs.get("detect_poles", False) self.eps = kwargs.get("eps", 0.01) self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False)) self.unwrap = kwargs.get("unwrap", False) # when detect_poles="symbolic", stores the location of poles so that # they can be appropriately rendered self.poles_locations = [] exclude = kwargs.get("exclude", []) if isinstance(exclude, Set): exclude = list(extract_solution(exclude, n=100)) if not hasattr(exclude, "__iter__"): exclude = [exclude] exclude = [float(e) for e in exclude] self.exclude = sorted(exclude) def get_data(self): """Return coordinates for plotting the line. Returns ======= x: np.ndarray x-coordinates y: np.ndarray y-coordinates z: np.ndarray (optional) z-coordinates in case of Parametric3DLineSeries, Parametric3DLineInteractiveSeries param : np.ndarray (optional) The parameter in case of Parametric2DLineSeries, Parametric3DLineSeries or AbsArgLineSeries (and their corresponding interactive series). """ np = import_module('numpy') points = self._get_data_helper() if (isinstance(self, LineOver1DRangeSeries) and (self.detect_poles == "symbolic")): poles = _detect_poles_symbolic_helper( self.expr.subs(self.params), *self.ranges[0]) poles = np.array([float(t) for t in poles]) t = lambda x, transform: x if transform is None else transform(x) self.poles_locations = t(np.array(poles), self._tx) # postprocessing points = self._apply_transform(*points) if self.is_2Dline and self.detect_poles: if len(points) == 2: x, y = points x, y = _detect_poles_numerical_helper( x, y, self.eps) points = (x, y) else: x, y, p = points x, y = _detect_poles_numerical_helper(x, y, self.eps) points = (x, y, p) if self.unwrap: kw = {} if self.unwrap is not True: kw = self.unwrap if self.is_2Dline: if len(points) == 2: x, y = points y = np.unwrap(y, **kw) points = (x, y) else: x, y, p = points y = np.unwrap(y, **kw) points = (x, y, p) if self.steps is True: if self.is_2Dline: x, y = points[0], points[1] x = np.array((x, x)).T.flatten()[1:] y = np.array((y, y)).T.flatten()[:-1] if self.is_parametric: points = (x, y, points[2]) else: points = (x, y) elif self.is_3Dline: x = np.repeat(points[0], 3)[2:] y = np.repeat(points[1], 3)[:-2] z = np.repeat(points[2], 3)[1:-1] if len(points) > 3: points = (x, y, z, points[3]) else: points = (x, y, z) if len(self.exclude) > 0: points = self._insert_exclusions(points) return points def get_segments(self): sympy_deprecation_warning( """ The Line2DBaseSeries.get_segments() method is deprecated. Instead, use the MatplotlibBackend.get_segments() method, or use The get_points() or get_data() methods. """, deprecated_since_version="1.9", active_deprecations_target="deprecated-get-segments") np = import_module('numpy') points = type(self).get_data(self) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def _insert_exclusions(self, points): """Add NaN to each of the exclusion point. Practically, this adds a NaN to the exlusion point, plus two other nearby points evaluated with the numerical functions associated to this data series. These nearby points are important when the number of discretization points is low, or the scale is logarithm. NOTE: it would be easier to just add exclusion points to the discretized domain before evaluation, then after evaluation add NaN to the exclusion points. But that's only work with adaptive=False. The following approach work even with adaptive=True. """ np = import_module("numpy") points = list(points) n = len(points) # index of the x-coordinate (for 2d plots) or parameter (for 2d/3d # parametric plots) k = n - 1 if n == 2: k = 0 # indeces of the other coordinates j_indeces = sorted(set(range(n)).difference([k])) # TODO: for now, I assume that numpy functions are going to succeed funcs = [f[0] for f in self._functions] for e in self.exclude: res = points[k] - e >= 0 # if res contains both True and False, ie, if e is found if any(res) and any(~res): idx = np.nanargmax(res) # select the previous point with respect to e idx -= 1 # TODO: what if points[k][idx]==e or points[k][idx+1]==e? if idx > 0 and idx < len(points[k]) - 1: delta_prev = abs(e - points[k][idx]) delta_post = abs(e - points[k][idx + 1]) delta = min(delta_prev, delta_post) / 100 prev = e - delta post = e + delta # add points to the x-coord or the parameter points[k] = np.concatenate( (points[k][:idx], [prev, e, post], points[k][idx+1:])) # add points to the other coordinates c = 0 for j in j_indeces: values = funcs[c](np.array([prev, post])) c += 1 points[j] = np.concatenate( (points[j][:idx], [values[0], np.nan, values[1]], points[j][idx+1:])) return points @property def var(self): return None if not self.ranges else self.ranges[0][0] @property def start(self): if not self.ranges: return None try: return self._cast(self.ranges[0][1]) except TypeError: return self.ranges[0][1] @property def end(self): if not self.ranges: return None try: return self._cast(self.ranges[0][2]) except TypeError: return self.ranges[0][2] @property def xscale(self): return self._scales[0] @xscale.setter def xscale(self, v): self.scales = v def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) nargs = arity(c) if nargs == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y, label="", **kwargs): super().__init__(**kwargs) np = import_module('numpy') if len(list_x) != len(list_y): raise ValueError( "The two lists of coordinates must have the same " "number of elements.\n" "Received: len(list_x) = {} ".format(len(list_x)) + "and len(list_y) = {}".format(len(list_y)) ) self._block_lambda_functions(list_x, list_y) check = lambda l: [isinstance(t, Expr) and (not t.is_number) for t in l] if any(check(list_x) + check(list_y)) or self.params: if not self.params: raise ValueError("Some or all elements of the provided lists " "are symbolic expressions, but the ``params`` dictionary " "was not provided: those elements can't be evaluated.") self.list_x = Tuple(*list_x) self.list_y = Tuple(*list_y) else: self.list_x = np.array(list_x, dtype=np.float64) self.list_y = np.array(list_y, dtype=np.float64) self._expr = (self.list_x, self.list_y) if not any(isinstance(t, np.ndarray) for t in [self.list_x, self.list_y]): self._check_fs() self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False)) self.label = label self.rendering_kw = kwargs.get("rendering_kw", {}) if self.use_cm and self.color_func: self.is_parametric = True if isinstance(self.color_func, Expr): raise TypeError( "%s don't support symbolic " % self.__class__.__name__ + "expression for `color_func`.") def __str__(self): return "2D list plot" def _get_data_helper(self): """Returns coordinates that needs to be postprocessed.""" lx, ly = self.list_x, self.list_y if not self.is_interactive: return self._eval_color_func_and_return(lx, ly) np = import_module('numpy') lx = np.array([t.evalf(subs=self.params) for t in lx], dtype=float) ly = np.array([t.evalf(subs=self.params) for t in ly], dtype=float) return self._eval_color_func_and_return(lx, ly) def _eval_color_func_and_return(self, *data): if self.use_cm and callable(self.color_func): return [*data, self.eval_color_func(*data)] return data class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a SymPy expression over a range.""" def __init__(self, expr, var_start_end, label="", **kwargs): super().__init__(**kwargs) self.expr = expr if callable(expr) else sympify(expr) self._label = str(self.expr) if label is None else label self._latex_label = latex(self.expr) if label is None else label self.ranges = [var_start_end] self._cast = complex # for complex-related data series, this determines what data to return # on the y-axis self._return = kwargs.get("return", None) self._post_init() if not self._interactive_ranges: # NOTE: the following check is only possible when the minimum and # maximum values of a plotting range are numeric start, end = [complex(t) for t in self.ranges[0][1:]] if im(start) != im(end): raise ValueError( "%s requires the imaginary " % self.__class__.__name__ + "part of the start and end values of the range " "to be the same.") if self.adaptive and self._return: warnings.warn("The adaptive algorithm is unable to deal with " "complex numbers. Automatically switching to uniform meshing.") self.adaptive = False @property def nb_of_points(self): return self.n[0] @nb_of_points.setter def nb_of_points(self, v): self.n = v def __str__(self): def f(t): if isinstance(t, complex): if t.imag != 0: return t return t.real return t pre = "interactive " if self.is_interactive else "" post = "" if self.is_interactive: post = " and parameters " + str(tuple(self.params.keys())) wrapper = _get_wrapper_for_expr(self._return) return pre + "cartesian line: %s for %s over %s" % ( wrapper % self.expr, str(self.var), str((f(self.start), f(self.end))), ) + post def get_points(self): """Return lists of coordinates for plotting. Depending on the ``adaptive`` option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range. This function is available for back-compatibility purposes. Consider using ``get_data()`` instead. Returns ======= x : list List of x-coordinates y : list List of y-coordinates """ return self._get_data_helper() def _adaptive_sampling(self): try: if callable(self.expr): f = self.expr else: f = lambdify([self.var], self.expr, self.modules) x, y = self._adaptive_sampling_helper(f) except Exception as err: warnings.warn( "The evaluation with %s failed.\n" % ( "NumPy/SciPy" if not self.modules else self.modules) + "{}: {}\n".format(type(err).__name__, err) + "Trying to evaluate the expression with Sympy, but it might " "be a slow operation." ) f = lambdify([self.var], self.expr, "sympy") x, y = self._adaptive_sampling_helper(f) return x, y def _adaptive_sampling_helper(self, f): """The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== .. [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ np = import_module('numpy') x_coords = [] y_coords = [] def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ # Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 if self.xscale == 'log': xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) - np.log10(p[0]))) else: xnew = p[0] + random * (q[0] - p[0]) ynew = _adaptive_eval(f, xnew) new_point = np.array([xnew, ynew]) # Maximum depth if depth > self.depth: x_coords.append(q[0]) y_coords.append(q[1]) # Sample to depth of 6 (whether the line is flat or not) # without using linspace (to avoid aliasing). elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) # Sample ten points if complex values are encountered # at both ends. If there is a real value in between, then # sample those points further. elif p[1] is None and q[1] is None: if self.xscale == 'log': xarray = np.logspace(p[0], q[0], 10) else: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if not all(y is None for y in yarray): for i in range(len(yarray) - 1): if not (yarray[i] is None and yarray[i + 1] is None): sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) # Sample further if one of the end points in None (i.e. a # complex value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: x_coords.append(q[0]) y_coords.append(q[1]) f_start = _adaptive_eval(f, self.start.real) f_end = _adaptive_eval(f, self.end.real) x_coords.append(self.start.real) y_coords.append(f_start) sample(np.array([self.start.real, f_start]), np.array([self.end.real, f_end]), 0) return (x_coords, y_coords) def _uniform_sampling(self): np = import_module('numpy') x, result = self._evaluate() _re, _im = np.real(result), np.imag(result) _re = self._correct_shape(_re, x) _im = self._correct_shape(_im, x) return x, _re, _im def _get_data_helper(self): """Returns coordinates that needs to be postprocessed. """ np = import_module('numpy') if self.adaptive and (not self.only_integers): x, y = self._adaptive_sampling() return [np.array(t) for t in [x, y]] x, _re, _im = self._uniform_sampling() if self._return is None: # The evaluation could produce complex numbers. Set real elements # to NaN where there are non-zero imaginary elements _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan elif self._return == "real": pass elif self._return == "imag": _re = _im elif self._return == "abs": _re = np.sqrt(_re**2 + _im**2) elif self._return == "arg": _re = np.arctan2(_im, _re) else: raise ValueError("`_return` not recognized. " "Received: %s" % self._return) return x, _re class ParametricLineBaseSeries(Line2DBaseSeries): is_parametric = True def _set_parametric_line_label(self, label): """Logic to set the correct label to be shown on the plot. If `use_cm=True` there will be a colorbar, so we show the parameter. If `use_cm=False`, there might be a legend, so we show the expressions. Parameters ========== label : str label passed in by the pre-processor or the user """ self._label = str(self.var) if label is None else label self._latex_label = latex(self.var) if label is None else label if (self.use_cm is False) and (self._label == str(self.var)): self._label = str(self.expr) self._latex_label = latex(self.expr) # if the expressions is a lambda function and use_cm=False and no label # has been provided, then its better to do the following in order to # avoid suprises on the backend if any(callable(e) for e in self.expr) and (not self.use_cm): if self._label == str(self.expr): self._label = "" def get_label(self, use_latex=False, wrapper="$%s$"): # parametric lines returns the representation of the parameter to be # shown on the colorbar if `use_cm=True`, otherwise it returns the # representation of the expression to be placed on the legend. if self.use_cm: if str(self.var) == self._label: if use_latex: return self._get_wrapped_label(latex(self.var), wrapper) return str(self.var) # here the user has provided a custom label return self._label if use_latex: if self._label != str(self.expr): return self._latex_label return self._get_wrapped_label(self._latex_label, wrapper) return self._label def _get_data_helper(self): """Returns coordinates that needs to be postprocessed. Depending on the `adaptive` option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range. """ if self.adaptive: np = import_module("numpy") coords = self._adaptive_sampling() coords = [np.array(t) for t in coords] else: coords = self._uniform_sampling() if self.is_2Dline and self.is_polar: # when plot_polar is executed with polar_axis=True np = import_module('numpy') x, y, _ = coords r = np.sqrt(x**2 + y**2) t = np.arctan2(y, x) coords = [t, r, coords[-1]] if callable(self.color_func): coords = list(coords) coords[-1] = self.eval_color_func(*coords) return coords def _uniform_sampling(self): """Returns coordinates that needs to be postprocessed.""" np = import_module('numpy') results = self._evaluate() for i, r in enumerate(results): _re, _im = np.real(r), np.imag(r) _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan results[i] = _re return [*results[1:], results[0]] def get_parameter_points(self): return self.get_data()[-1] def get_points(self): """ Return lists of coordinates for plotting. Depending on the ``adaptive`` option, this function will either use an adaptive algorithm or it will uniformly sample the expression over the provided range. This function is available for back-compatibility purposes. Consider using ``get_data()`` instead. Returns ======= x : list List of x-coordinates y : list List of y-coordinates z : list List of z-coordinates, only for 3D parametric line plot. """ return self._get_data_helper()[:-1] @property def nb_of_points(self): return self.n[0] @nb_of_points.setter def nb_of_points(self, v): self.n = v class Parametric2DLineSeries(ParametricLineBaseSeries): """Representation for a line consisting of two parametric SymPy expressions over a range.""" is_2Dline = True def __init__(self, expr_x, expr_y, var_start_end, label="", **kwargs): super().__init__(**kwargs) self.expr_x = expr_x if callable(expr_x) else sympify(expr_x) self.expr_y = expr_y if callable(expr_y) else sympify(expr_y) self.expr = (self.expr_x, self.expr_y) self.ranges = [var_start_end] self._cast = float self.use_cm = kwargs.get("use_cm", True) self._set_parametric_line_label(label) self._post_init() def __str__(self): return self._str_helper( "parametric cartesian line: (%s, %s) for %s over %s" % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end)) )) def _adaptive_sampling(self): try: if callable(self.expr_x) and callable(self.expr_y): f_x = self.expr_x f_y = self.expr_y else: f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) x, y, p = self._adaptive_sampling_helper(f_x, f_y) except Exception as err: warnings.warn( "The evaluation with %s failed.\n" % ( "NumPy/SciPy" if not self.modules else self.modules) + "{}: {}\n".format(type(err).__name__, err) + "Trying to evaluate the expression with Sympy, but it might " "be a slow operation." ) f_x = lambdify([self.var], self.expr_x, "sympy") f_y = lambdify([self.var], self.expr_y, "sympy") x, y, p = self._adaptive_sampling_helper(f_x, f_y) return x, y, p def _adaptive_sampling_helper(self, f_x, f_y): """The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== .. [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ x_coords = [] y_coords = [] param = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ # Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = _adaptive_eval(f_x, param_new) ynew = _adaptive_eval(f_y, param_new) new_point = np.array([xnew, ynew]) # Maximum depth if depth > self.depth: x_coords.append(q[0]) y_coords.append(q[1]) param.append(param_p) # Sample irrespective of whether the line is flat till the # depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) # Sample ten points if complex values are encountered # at both ends. If there is a real value in between, then # sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = [_adaptive_eval(f_x, t) for t in param_array] y_array = [_adaptive_eval(f_y, t) for t in param_array] if not all(x is None and y is None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) # Sample further if one of the end points in None (i.e. a complex # value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: x_coords.append(q[0]) y_coords.append(q[1]) param.append(param_p) f_start_x = _adaptive_eval(f_x, self.start) f_start_y = _adaptive_eval(f_y, self.start) start = [f_start_x, f_start_y] f_end_x = _adaptive_eval(f_x, self.end) f_end_y = _adaptive_eval(f_y, self.end) end = [f_end_x, f_end_y] x_coords.append(f_start_x) y_coords.append(f_start_y) param.append(self.start) sample(self.start, self.end, start, end, 0) return x_coords, y_coords, param ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super().__init__() class Parametric3DLineSeries(ParametricLineBaseSeries): """Representation for a 3D line consisting of three parametric SymPy expressions and a range.""" is_2Dline = False is_3Dline = True def __init__(self, expr_x, expr_y, expr_z, var_start_end, label="", **kwargs): super().__init__(**kwargs) self.expr_x = expr_x if callable(expr_x) else sympify(expr_x) self.expr_y = expr_y if callable(expr_y) else sympify(expr_y) self.expr_z = expr_z if callable(expr_z) else sympify(expr_z) self.expr = (self.expr_x, self.expr_y, self.expr_z) self.ranges = [var_start_end] self._cast = float self.adaptive = False self.use_cm = kwargs.get("use_cm", True) self._set_parametric_line_label(label) self._post_init() # TODO: remove this self._xlim = None self._ylim = None self._zlim = None def __str__(self): return self._str_helper( "3D parametric cartesian line: (%s, %s, %s) for %s over %s" % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end)) )) def get_data(self): # TODO: remove this np = import_module("numpy") x, y, z, p = super().get_data() self._xlim = (np.amin(x), np.amax(x)) self._ylim = (np.amin(y), np.amax(y)) self._zlim = (np.amin(z), np.amax(z)) return x, y, z, p ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self, *args, **kwargs): super().__init__(**kwargs) self.use_cm = kwargs.get("use_cm", False) # NOTE: why should SurfaceOver2DRangeSeries support is polar? # After all, the same result can be achieve with # ParametricSurfaceSeries. For example: # sin(r) for (r, 0, 2 * pi) and (theta, 0, pi/2) can be parameterized # as (r * cos(theta), r * sin(theta), sin(t)) for (r, 0, 2 * pi) and # (theta, 0, pi/2). # Because it is faster to evaluate (important for interactive plots). self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False)) self.surface_color = kwargs.get("surface_color", None) self.color_func = kwargs.get("color_func", lambda x, y, z: z) if callable(self.surface_color): self.color_func = self.surface_color self.surface_color = None def _set_surface_label(self, label): exprs = self.expr self._label = str(exprs) if label is None else label self._latex_label = latex(exprs) if label is None else label # if the expressions is a lambda function and no label # has been provided, then its better to do the following to avoid # suprises on the backend is_lambda = (callable(exprs) if not hasattr(exprs, "__iter__") else any(callable(e) for e in exprs)) if is_lambda and (self._label == str(exprs)): self._label = "" self._latex_label = "" def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) nargs = arity(c) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if nargs == 1: return f(variables[0]) elif nargs == 2: return f(*variables[:2]) else: return f(*variables) else: if isinstance(self, SurfaceOver2DRangeSeries): return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y)) else: return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v)) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a SymPy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, label="", **kwargs): super().__init__(**kwargs) self.expr = expr if callable(expr) else sympify(expr) self.ranges = [var_start_end_x, var_start_end_y] self._set_surface_label(label) self._post_init() # TODO: remove this self._xlim = (self.start_x, self.end_x) self._ylim = (self.start_y, self.end_y) @property def var_x(self): return self.ranges[0][0] @property def var_y(self): return self.ranges[1][0] @property def start_x(self): try: return float(self.ranges[0][1]) except TypeError: return self.ranges[0][1] @property def end_x(self): try: return float(self.ranges[0][2]) except TypeError: return self.ranges[0][2] @property def start_y(self): try: return float(self.ranges[1][1]) except TypeError: return self.ranges[1][1] @property def end_y(self): try: return float(self.ranges[1][2]) except TypeError: return self.ranges[1][2] @property def nb_of_points_x(self): return self.n[0] @nb_of_points_x.setter def nb_of_points_x(self, v): n = self.n self.n = [v, n[1:]] @property def nb_of_points_y(self): return self.n[1] @nb_of_points_y.setter def nb_of_points_y(self, v): n = self.n self.n = [n[0], v, n[2]] def __str__(self): series_type = "cartesian surface" if self.is_3Dsurface else "contour" return self._str_helper( series_type + ": %s for" " %s over %s and %s over %s" % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y)), )) def get_meshes(self): """Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using ``get_data()`` instead. """ return self.get_data() def get_data(self): """Return arrays of coordinates for plotting. Returns ======= mesh_x : np.ndarray Discretized x-domain. mesh_y : np.ndarray Discretized y-domain. mesh_z : np.ndarray Results of the evaluation. """ np = import_module('numpy') results = self._evaluate() # mask out complex values for i, r in enumerate(results): _re, _im = np.real(r), np.imag(r) _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan results[i] = _re x, y, z = results if self.is_polar and self.is_3Dsurface: r = x.copy() x = r * np.cos(y) y = r * np.sin(y) # TODO: remove this self._zlim = (np.amin(z), np.amax(z)) return self._apply_transform(x, y, z) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric SymPy expressions and a range.""" is_parametric = True def __init__(self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, label="", **kwargs): super().__init__(**kwargs) self.expr_x = expr_x if callable(expr_x) else sympify(expr_x) self.expr_y = expr_y if callable(expr_y) else sympify(expr_y) self.expr_z = expr_z if callable(expr_z) else sympify(expr_z) self.expr = (self.expr_x, self.expr_y, self.expr_z) self.ranges = [var_start_end_u, var_start_end_v] self.color_func = kwargs.get("color_func", lambda x, y, z, u, v: z) self._set_surface_label(label) self._post_init() @property def var_u(self): return self.ranges[0][0] @property def var_v(self): return self.ranges[1][0] @property def start_u(self): try: return float(self.ranges[0][1]) except TypeError: return self.ranges[0][1] @property def end_u(self): try: return float(self.ranges[0][2]) except TypeError: return self.ranges[0][2] @property def start_v(self): try: return float(self.ranges[1][1]) except TypeError: return self.ranges[1][1] @property def end_v(self): try: return float(self.ranges[1][2]) except TypeError: return self.ranges[1][2] @property def nb_of_points_u(self): return self.n[0] @nb_of_points_u.setter def nb_of_points_u(self, v): n = self.n self.n = [v, n[1:]] @property def nb_of_points_v(self): return self.n[1] @nb_of_points_v.setter def nb_of_points_v(self, v): n = self.n self.n = [n[0], v, n[2]] def __str__(self): return self._str_helper( "parametric cartesian surface: (%s, %s, %s) for" " %s over %s and %s over %s" % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v)), )) def get_parameter_meshes(self): return self.get_data()[3:] def get_meshes(self): """Return the x,y,z coordinates for plotting the surface. This function is available for back-compatibility purposes. Consider using ``get_data()`` instead. """ return self.get_data()[:3] def get_data(self): """Return arrays of coordinates for plotting. Returns ======= x : np.ndarray [n2 x n1] x-coordinates. y : np.ndarray [n2 x n1] y-coordinates. z : np.ndarray [n2 x n1] z-coordinates. mesh_u : np.ndarray [n2 x n1] Discretized u range. mesh_v : np.ndarray [n2 x n1] Discretized v range. """ np = import_module('numpy') results = self._evaluate() # mask out complex values for i, r in enumerate(results): _re, _im = np.real(r), np.imag(r) _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan results[i] = _re # TODO: remove this x, y, z = results[2:] self._xlim = (np.amin(x), np.amax(x)) self._ylim = (np.amin(y), np.amax(y)) self._zlim = (np.amin(z), np.amax(z)) return self._apply_transform(*results[2:], *results[:2]) ### Contours class ContourSeries(SurfaceOver2DRangeSeries): """Representation for a contour plot.""" is_3Dsurface = False is_contour = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_filled = kwargs.get("is_filled", kwargs.get("fill", True)) self.show_clabels = kwargs.get("clabels", True) # NOTE: contour plots are used by plot_contour, plot_vector and # plot_complex_vector. By implementing contour_kw we are able to # quickly target the contour plot. self.rendering_kw = kwargs.get("contour_kw", kwargs.get("rendering_kw", {})) class GenericDataSeries(BaseSeries): """Represents generic numerical data. Notes ===== This class serves the purpose of back-compatibility with the "markers, annotations, fill, rectangles" keyword arguments that represent user-provided numerical data. In particular, it solves the problem of combining together two or more plot-objects with the ``extend`` or ``append`` methods: user-provided numerical data is also taken into consideration because it is stored in this series class. Also note that the current implementation is far from optimal, as each keyword argument is stored into an attribute in the ``Plot`` class, which requires a hard-coded if-statement in the ``MatplotlibBackend`` class. The implementation suggests that it is ok to add attributes and if-statements to provide more and more functionalities for user-provided numerical data (e.g. adding horizontal lines, or vertical lines, or bar plots, etc). However, in doing so one would reinvent the wheel: plotting libraries (like Matplotlib) already implements the necessary API. Instead of adding more keyword arguments and attributes, users interested in adding custom numerical data to a plot should retrieve the figure created by this plotting module. For example, this code: .. plot:: :context: close-figs :include-source: True from sympy import Symbol, plot, cos x = Symbol("x") p = plot(cos(x), markers=[{"args": [[0, 1, 2], [0, 1, -1], "*"]}]) Becomes: .. plot:: :context: close-figs :include-source: True p = plot(cos(x), backend="matplotlib") fig, ax = p._backend.fig, p._backend.ax[0] ax.plot([0, 1, 2], [0, 1, -1], "*") fig Which is far better in terms of readibility. Also, it gives access to the full plotting library capabilities, without the need to reinvent the wheel. """ is_generic = True def __init__(self, tp, *args, **kwargs): self.type = tp self.args = args self.rendering_kw = kwargs def get_data(self): return self.args class ImplicitSeries(BaseSeries): """Representation for 2D Implicit plot.""" is_implicit = True use_cm = False _N = 100 def __init__(self, expr, var_start_end_x, var_start_end_y, label="", **kwargs): super().__init__(**kwargs) self.adaptive = kwargs.get("adaptive", False) self.expr = expr self._label = str(expr) if label is None else label self._latex_label = latex(expr) if label is None else label self.ranges = [var_start_end_x, var_start_end_y] self.var_x, self.start_x, self.end_x = self.ranges[0] self.var_y, self.start_y, self.end_y = self.ranges[1] self._color = kwargs.get("color", kwargs.get("line_color", None)) if self.is_interactive and self.adaptive: raise NotImplementedError("Interactive plot with `adaptive=True` " "is not supported.") # Check whether the depth is greater than 4 or less than 0. depth = kwargs.get("depth", 0) if depth > 4: depth = 4 elif depth < 0: depth = 0 self.depth = 4 + depth self._post_init() @property def expr(self): if self.adaptive: return self._adaptive_expr return self._non_adaptive_expr @expr.setter def expr(self, expr): self._block_lambda_functions(expr) # these are needed for adaptive evaluation expr, has_equality = self._has_equality(sympify(expr)) self._adaptive_expr = expr self.has_equality = has_equality self._label = str(expr) self._latex_label = latex(expr) if isinstance(expr, (BooleanFunction, Ne)) and (not self.adaptive): self.adaptive = True msg = "contains Boolean functions. " if isinstance(expr, Ne): msg = "is an unequality. " warnings.warn( "The provided expression " + msg + "In order to plot the expression, the algorithm " + "automatically switched to an adaptive sampling." ) if isinstance(expr, BooleanFunction): self._non_adaptive_expr = None self._is_equality = False else: # these are needed for uniform meshing evaluation expr, is_equality = self._preprocess_meshgrid_expression(expr, self.adaptive) self._non_adaptive_expr = expr self._is_equality = is_equality @property def line_color(self): return self._color @line_color.setter def line_color(self, v): self._color = v color = line_color def _has_equality(self, expr): # Represents whether the expression contains an Equality, GreaterThan # or LessThan has_equality = False def arg_expand(bool_expr): """Recursively expands the arguments of an Boolean Function""" for arg in bool_expr.args: if isinstance(arg, BooleanFunction): arg_expand(arg) elif isinstance(arg, Relational): arg_list.append(arg) arg_list = [] if isinstance(expr, BooleanFunction): arg_expand(expr) # Check whether there is an equality in the expression provided. if any(isinstance(e, (Equality, GreaterThan, LessThan)) for e in arg_list): has_equality = True elif not isinstance(expr, Relational): expr = Equality(expr, 0) has_equality = True elif isinstance(expr, (Equality, GreaterThan, LessThan)): has_equality = True return expr, has_equality def __str__(self): f = lambda t: float(t) if len(t.free_symbols) == 0 else t return self._str_helper( "Implicit expression: %s for %s over %s and %s over %s") % ( str(self._adaptive_expr), str(self.var_x), str((f(self.start_x), f(self.end_x))), str(self.var_y), str((f(self.start_y), f(self.end_y))), ) def get_data(self): """Returns numerical data. Returns ======= If the series is evaluated with the `adaptive=True` it returns: interval_list : list List of bounding rectangular intervals to be postprocessed and eventually used with Matplotlib's ``fill`` command. dummy : str A string containing ``"fill"``. Otherwise, it returns 2D numpy arrays to be used with Matplotlib's ``contour`` or ``contourf`` commands: x_array : np.ndarray y_array : np.ndarray z_array : np.ndarray plot_type : str A string specifying which plot command to use, ``"contour"`` or ``"contourf"``. """ if self.adaptive: data = self._adaptive_eval() if data is not None: return data return self._get_meshes_grid() def _adaptive_eval(self): """ References ========== .. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for Mathematical Formulae with Two Free Variables. .. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval Arithmetic. Master's thesis. University of Toronto, 1996 """ import sympy.plotting.intervalmath.lib_interval as li user_functions = {} printer = IntervalMathPrinter({ 'fully_qualified_modules': False, 'inline': True, 'allow_unknown_functions': True, 'user_functions': user_functions}) keys = [t for t in dir(li) if ("__" not in t) and (t not in ["import_module", "interval"])] vals = [getattr(li, k) for k in keys] d = dict(zip(keys, vals)) func = lambdify((self.var_x, self.var_y), self.expr, modules=[d], printer=printer) data = None try: data = self._get_raster_interval(func) except NameError as err: warnings.warn( "Adaptive meshing could not be applied to the" " expression, as some functions are not yet implemented" " in the interval math module:\n\n" "NameError: %s\n\n" % err + "Proceeding with uniform meshing." ) self.adaptive = False except TypeError: warnings.warn( "Adaptive meshing could not be applied to the" " expression. Using uniform meshing.") self.adaptive = False return data def _get_raster_interval(self, func): """Uses interval math to adaptively mesh and obtain the plot""" np = import_module('numpy') k = self.depth interval_list = [] sx, sy = [float(t) for t in [self.start_x, self.start_y]] ex, ey = [float(t) for t in [self.end_x, self.end_y]] # Create initial 32 divisions xsample = np.linspace(sx, ex, 33) ysample = np.linspace(sy, ey, 33) # Add a small jitter so that there are no false positives for equality. # Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2) # which will draw a rectangle. jitterx = ( (np.random.rand(len(xsample)) * 2 - 1) * (ex - sx) / 2 ** 20 ) jittery = ( (np.random.rand(len(ysample)) * 2 - 1) * (ey - sy) / 2 ** 20 ) xsample += jitterx ysample += jittery xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1], xsample[1:])] yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1], ysample[1:])] interval_list = [[x, y] for x in xinter for y in yinter] plot_list = [] # recursive call refinepixels which subdivides the intervals which are # neither True nor False according to the expression. def refine_pixels(interval_list): """Evaluates the intervals and subdivides the interval if the expression is partially satisfied.""" temp_interval_list = [] plot_list = [] for intervals in interval_list: # Convert the array indices to x and y values intervalx = intervals[0] intervaly = intervals[1] func_eval = func(intervalx, intervaly) # The expression is valid in the interval. Change the contour # array values to 1. if func_eval[1] is False or func_eval[0] is False: pass elif func_eval == (True, True): plot_list.append([intervalx, intervaly]) elif func_eval[1] is None or func_eval[0] is None: # Subdivide avgx = intervalx.mid avgy = intervaly.mid a = interval(intervalx.start, avgx) b = interval(avgx, intervalx.end) c = interval(intervaly.start, avgy) d = interval(avgy, intervaly.end) temp_interval_list.append([a, c]) temp_interval_list.append([a, d]) temp_interval_list.append([b, c]) temp_interval_list.append([b, d]) return temp_interval_list, plot_list while k >= 0 and len(interval_list): interval_list, plot_list_temp = refine_pixels(interval_list) plot_list.extend(plot_list_temp) k = k - 1 # Check whether the expression represents an equality # If it represents an equality, then none of the intervals # would have satisfied the expression due to floating point # differences. Add all the undecided values to the plot. if self.has_equality: for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] func_eval = func(intervalx, intervaly) if func_eval[1] and func_eval[0] is not False: plot_list.append([intervalx, intervaly]) return plot_list, "fill" def _get_meshes_grid(self): """Generates the mesh for generating a contour. In the case of equality, ``contour`` function of matplotlib can be used. In other cases, matplotlib's ``contourf`` is used. """ np = import_module('numpy') xarray, yarray, z_grid = self._evaluate() _re, _im = np.real(z_grid), np.imag(z_grid) _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan if self._is_equality: return xarray, yarray, _re, 'contour' return xarray, yarray, _re, 'contourf' @staticmethod def _preprocess_meshgrid_expression(expr, adaptive): """If the expression is a Relational, rewrite it as a single expression. Returns ======= expr : Expr The rewritten expression equality : Boolean Wheter the original expression was an Equality or not. """ equality = False if isinstance(expr, Equality): expr = expr.lhs - expr.rhs equality = True elif isinstance(expr, Relational): expr = expr.gts - expr.lts elif not adaptive: raise NotImplementedError( "The expression is not supported for " "plotting in uniform meshed plot." ) return expr, equality def get_label(self, use_latex=False, wrapper="$%s$"): """Return the label to be used to display the expression. Parameters ========== use_latex : bool If False, the string representation of the expression is returned. If True, the latex representation is returned. wrapper : str The backend might need the latex representation to be wrapped by some characters. Default to ``"$%s$"``. Returns ======= label : str """ if use_latex is False: return self._label if self._label == str(self._adaptive_expr): return self._get_wrapped_label(self._latex_label, wrapper) return self._latex_label ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.mean(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.mean(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1:], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') # Workaround plotting piecewise (#8577) vector_a = (x - y).astype(float) vector_b = (z - y).astype(float) dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _set_discretization_points(kwargs, pt): """Allow the use of the keyword arguments ``n, n1, n2`` to specify the number of discretization points in one and two directions, while keeping back-compatibility with older keyword arguments like, ``nb_of_points, nb_of_points_*, points``. Parameters ========== kwargs : dict Dictionary of keyword arguments passed into a plotting function. pt : type The type of the series, which indicates the kind of plot we are trying to create. """ replace_old_keywords = { "nb_of_points": "n", "nb_of_points_x": "n1", "nb_of_points_y": "n2", "nb_of_points_u": "n1", "nb_of_points_v": "n2", "points": "n" } for k, v in replace_old_keywords.items(): if k in kwargs.keys(): kwargs[v] = kwargs.pop(k) if pt in [LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries]: if "n" in kwargs.keys(): kwargs["n1"] = kwargs["n"] if hasattr(kwargs["n"], "__iter__") and (len(kwargs["n"]) > 0): kwargs["n1"] = kwargs["n"][0] elif pt in [SurfaceOver2DRangeSeries, ContourSeries, ParametricSurfaceSeries, ImplicitSeries]: if "n" in kwargs.keys(): if hasattr(kwargs["n"], "__iter__") and (len(kwargs["n"]) > 1): kwargs["n1"] = kwargs["n"][0] kwargs["n2"] = kwargs["n"][1] else: kwargs["n1"] = kwargs["n2"] = kwargs["n"] return kwargs