from sympy.core.containers import Tuple from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import AppliedUndef from sympy.core.relational import Relational from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.logic.boolalg import BooleanFunction from sympy.sets.fancysets import ImageSet from sympy.sets.sets import FiniteSet from sympy.tensor.indexed import Indexed def _get_free_symbols(exprs): """Returns the free symbols of a symbolic expression. If the expression contains any of these elements, assume that they are the "free symbols" of the expression: * indexed objects * applied undefined function (useful for sympy.physics.mechanics module) """ if not isinstance(exprs, (list, tuple, set)): exprs = [exprs] if all(callable(e) for e in exprs): return set() free = set().union(*[e.atoms(Indexed) for e in exprs]) free = free.union(*[e.atoms(AppliedUndef) for e in exprs]) return free or set().union(*[e.free_symbols for e in exprs]) def extract_solution(set_sol, n=10): """Extract numerical solutions from a set solution (computed by solveset, linsolve, nonlinsolve). Often, it is not trivial do get something useful out of them. Parameters ========== n : int, optional In order to replace ImageSet with FiniteSet, an iterator is created for each ImageSet contained in `set_sol`, starting from 0 up to `n`. Default value: 10. """ images = set_sol.find(ImageSet) for im in images: it = iter(im) s = FiniteSet(*[next(it) for n in range(0, n)]) set_sol = set_sol.subs(im, s) return set_sol def _plot_sympify(args): """This function recursively loop over the arguments passed to the plot functions: the sympify function will be applied to all arguments except those of type string/dict. Generally, users can provide the following arguments to a plot function: expr, range1 [tuple, opt], ..., label [str, opt], rendering_kw [dict, opt] `expr, range1, ...` can be sympified, whereas `label, rendering_kw` can't. In particular, whenever a special character like $, {, }, ... is used in the `label`, sympify will raise an error. """ if isinstance(args, Expr): return args args = list(args) for i, a in enumerate(args): if isinstance(a, (list, tuple)): args[i] = Tuple(*_plot_sympify(a), sympify=False) elif not (isinstance(a, (str, dict)) or callable(a) # NOTE: check if it is a vector from sympy.physics.vector module # without importing the module (because it slows down SymPy's # import process and triggers SymPy's optional-dependencies # tests to fail). or ((a.__class__.__name__ == "Vector") and not isinstance(a, Basic)) ): args[i] = sympify(a) return args def _create_ranges(exprs, ranges, npar, label="", params=None): """This function does two things: 1. Check if the number of free symbols is in agreement with the type of plot chosen. For example, plot() requires 1 free symbol; plot3d() requires 2 free symbols. 2. Sometime users create plots without providing ranges for the variables. Here we create the necessary ranges. Parameters ========== exprs : iterable The expressions from which to extract the free symbols ranges : iterable The limiting ranges provided by the user npar : int The number of free symbols required by the plot functions. For example, npar=1 for plot, npar=2 for plot3d, ... params : dict A dictionary mapping symbols to parameters for interactive plot. """ get_default_range = lambda symbol: Tuple(symbol, -10, 10) free_symbols = _get_free_symbols(exprs) if params is not None: free_symbols = free_symbols.difference(params.keys()) if len(free_symbols) > npar: raise ValueError( "Too many free symbols.\n" + "Expected {} free symbols.\n".format(npar) + "Received {}: {}".format(len(free_symbols), free_symbols) ) if len(ranges) > npar: raise ValueError( "Too many ranges. Received %s, expected %s" % (len(ranges), npar)) # free symbols in the ranges provided by the user rfs = set().union([r[0] for r in ranges]) if len(rfs) != len(ranges): raise ValueError("Multiple ranges with the same symbol") if len(ranges) < npar: symbols = free_symbols.difference(rfs) if symbols != set(): # add a range for each missing free symbols for s in symbols: ranges.append(get_default_range(s)) # if there is still room, fill them with dummys for i in range(npar - len(ranges)): ranges.append(get_default_range(Dummy())) if len(free_symbols) == npar: # there could be times when this condition is not met, for example # plotting the function f(x, y) = x (which is a plane); in this case, # free_symbols = {x} whereas rfs = {x, y} (or x and Dummy) rfs = set().union([r[0] for r in ranges]) if len(free_symbols.difference(rfs)) > 0: raise ValueError( "Incompatible free symbols of the expressions with " "the ranges.\n" + "Free symbols in the expressions: {}\n".format(free_symbols) + "Free symbols in the ranges: {}".format(rfs) ) return ranges def _is_range(r): """A range is defined as (symbol, start, end). start and end should be numbers. """ # TODO: prange check goes here return ( isinstance(r, Tuple) and (len(r) == 3) and (not isinstance(r.args[1], str)) and r.args[1].is_number and (not isinstance(r.args[2], str)) and r.args[2].is_number ) def _unpack_args(*args): """Given a list/tuple of arguments previously processed by _plot_sympify() and/or _check_arguments(), separates and returns its components: expressions, ranges, label and rendering keywords. Examples ======== >>> from sympy import cos, sin, symbols >>> from sympy.plotting.utils import _plot_sympify, _unpack_args >>> x, y = symbols('x, y') >>> args = (sin(x), (x, -10, 10), "f1") >>> args = _plot_sympify(args) >>> _unpack_args(*args) ([sin(x)], [(x, -10, 10)], 'f1', None) >>> args = (sin(x**2 + y**2), (x, -2, 2), (y, -3, 3), "f2") >>> args = _plot_sympify(args) >>> _unpack_args(*args) ([sin(x**2 + y**2)], [(x, -2, 2), (y, -3, 3)], 'f2', None) >>> args = (sin(x + y), cos(x - y), x + y, (x, -2, 2), (y, -3, 3), "f3") >>> args = _plot_sympify(args) >>> _unpack_args(*args) ([sin(x + y), cos(x - y), x + y], [(x, -2, 2), (y, -3, 3)], 'f3', None) """ ranges = [t for t in args if _is_range(t)] labels = [t for t in args if isinstance(t, str)] label = None if not labels else labels[0] rendering_kw = [t for t in args if isinstance(t, dict)] rendering_kw = None if not rendering_kw else rendering_kw[0] # NOTE: why None? because args might have been preprocessed by # _check_arguments, so None might represent the rendering_kw results = [not (_is_range(a) or isinstance(a, (str, dict)) or (a is None)) for a in args] exprs = [a for a, b in zip(args, results) if b] return exprs, ranges, label, rendering_kw def _check_arguments(args, nexpr, npar, **kwargs): """Checks the arguments and converts into tuples of the form (exprs, ranges, label, rendering_kw). Parameters ========== args The arguments provided to the plot functions nexpr The number of sub-expression forming an expression to be plotted. For example: nexpr=1 for plot. nexpr=2 for plot_parametric: a curve is represented by a tuple of two elements. nexpr=1 for plot3d. nexpr=3 for plot3d_parametric_line: a curve is represented by a tuple of three elements. npar The number of free symbols required by the plot functions. For example, npar=1 for plot, npar=2 for plot3d, ... **kwargs : keyword arguments passed to the plotting function. It will be used to verify if ``params`` has ben provided. Examples ======== .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import cos, sin, symbols >>> from sympy.plotting.plot import _check_arguments >>> x = symbols('x') >>> _check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10), None, None)] >>> _check_arguments([cos(x), sin(x), "test"], 2, 1) [(cos(x), sin(x), (x, -10, 10), 'test', None)] >>> _check_arguments([cos(x), sin(x), "test", {"a": 0, "b": 1}], 2, 1) [(cos(x), sin(x), (x, -10, 10), 'test', {'a': 0, 'b': 1})] >>> _check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10), None, None), (x**2, (x, -10, 10), None, None)] """ if not args: return [] output = [] params = kwargs.get("params", None) if all(isinstance(a, (Expr, Relational, BooleanFunction)) for a in args[:nexpr]): # In this case, with a single plot command, we are plotting either: # 1. one expression # 2. multiple expressions over the same range exprs, ranges, label, rendering_kw = _unpack_args(*args) free_symbols = set().union(*[e.free_symbols for e in exprs]) ranges = _create_ranges(exprs, ranges, npar, label, params) if nexpr > 1: # in case of plot_parametric or plot3d_parametric_line, there will # be 2 or 3 expressions defining a curve. Group them together. if len(exprs) == nexpr: exprs = (tuple(exprs),) for expr in exprs: # need this if-else to deal with both plot/plot3d and # plot_parametric/plot3d_parametric_line is_expr = isinstance(expr, (Expr, Relational, BooleanFunction)) e = (expr,) if is_expr else expr output.append((*e, *ranges, label, rendering_kw)) else: # In this case, we are plotting multiple expressions, each one with its # range. Each "expression" to be plotted has the following form: # (expr, range, label) where label is optional _, ranges, labels, rendering_kw = _unpack_args(*args) labels = [labels] if labels else [] # number of expressions n = (len(ranges) + len(labels) + (len(rendering_kw) if rendering_kw is not None else 0)) new_args = args[:-n] if n > 0 else args # at this point, new_args might just be [expr]. But I need it to be # [[expr]] in order to be able to loop over # [expr, range [opt], label [opt]] if not isinstance(new_args[0], (list, tuple, Tuple)): new_args = [new_args] # Each arg has the form (expr1, expr2, ..., range1 [optional], ..., # label [optional], rendering_kw [optional]) for arg in new_args: # look for "local" range and label. If there is not, use "global". l = [a for a in arg if isinstance(a, str)] if not l: l = labels r = [a for a in arg if _is_range(a)] if not r: r = ranges.copy() rend_kw = [a for a in arg if isinstance(a, dict)] rend_kw = rendering_kw if len(rend_kw) == 0 else rend_kw[0] # NOTE: arg = arg[:nexpr] may raise an exception if lambda # functions are used. Execute the following instead: arg = [arg[i] for i in range(nexpr)] free_symbols = set() if all(not callable(a) for a in arg): free_symbols = free_symbols.union(*[a.free_symbols for a in arg]) if len(r) != npar: r = _create_ranges(arg, r, npar, "", params) label = None if not l else l[0] output.append((*arg, *r, label, rend_kw)) return output