""" R code printer The RCodePrinter converts single SymPy expressions into single R expressions, using the functions defined in math.h where possible. """ from __future__ import annotations from typing import Any from sympy.core.numbers import equal_valued from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from sympy.sets.fancysets import Range # dictionary mapping SymPy function to (argument_conditions, C_function). # Used in RCodePrinter._print_Function(self) known_functions = { #"Abs": [(lambda x: not x.is_integer, "fabs")], "Abs": "abs", "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "exp": "exp", "log": "log", "erf": "erf", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "asinh": "asinh", "acosh": "acosh", "atanh": "atanh", "floor": "floor", "ceiling": "ceiling", "sign": "sign", "Max": "max", "Min": "min", "factorial": "factorial", "gamma": "gamma", "digamma": "digamma", "trigamma": "trigamma", "beta": "beta", "sqrt": "sqrt", # To enable automatic rewrite } # These are the core reserved words in the R language. Taken from: # https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Reserved-words reserved_words = ['if', 'else', 'repeat', 'while', 'function', 'for', 'in', 'next', 'break', 'TRUE', 'FALSE', 'NULL', 'Inf', 'NaN', 'NA', 'NA_integer_', 'NA_real_', 'NA_complex_', 'NA_character_', 'volatile'] class RCodePrinter(CodePrinter): """A printer to convert SymPy expressions to strings of R code""" printmethod = "_rcode" language = "R" _default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ 'precision': 15, 'user_functions': {}, 'contract': True, 'dereference': set(), }) _operators = { 'and': '&', 'or': '|', 'not': '!', } _relationals: dict[str, str] = {} def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) self._dereference = set(settings.get('dereference', [])) self.reserved_words = set(reserved_words) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// {}".format(text) def _declare_number_const(self, name, value): return "{} = {};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines """ open_lines = [] close_lines = [] loopstart = "for (%(var)s in %(start)s:%(end)s){" for i in indices: # R arrays start at 1 and end at dimension open_lines.append(loopstart % { 'var': self._print(i.label), 'start': self._print(i.lower+1), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_Pow(self, expr): if "Pow" in self.known_functions: return self._print_Function(expr) PREC = precedence(expr) if equal_valued(expr.exp, -1): return '1.0/%s' % (self.parenthesize(expr.base, PREC)) elif equal_valued(expr.exp, 0.5): return 'sqrt(%s)' % self._print(expr.base) else: return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return '%d.0/%d.0' % (p, q) def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_Exp1(self, expr): return "exp(1)" def _print_Pi(self, expr): return 'pi' def _print_Infinity(self, expr): return 'Inf' def _print_NegativeInfinity(self, expr): return '-Inf' def _print_Assignment(self, expr): from sympy.codegen.ast import Assignment from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines #if isinstance(expr.rhs, Piecewise): # from sympy.functions.elementary.piecewise import Piecewise # # Here we modify Piecewise so each expression is now # # an Assignment, and then continue on the print. # expressions = [] # conditions = [] # for (e, c) in rhs.args: # expressions.append(Assignment(lhs, e)) # conditions.append(c) # temp = Piecewise(*zip(expressions, conditions)) # return self._print(temp) #elif isinstance(lhs, MatrixSymbol): if isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Piecewise(self, expr): # This method is called only for inline if constructs # Top level piecewise is handled in doprint() if expr.args[-1].cond == True: last_line = "%s" % self._print(expr.args[-1].expr) else: last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr)) code=last_line for e, c in reversed(expr.args[:-1]): code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")" return(code) def _print_ITE(self, expr): from sympy.functions import Piecewise return self._print(expr.rewrite(Piecewise)) def _print_MatrixElement(self, expr): return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.j + expr.i*expr.parent.shape[1]) def _print_Symbol(self, expr): name = super()._print_Symbol(expr) if expr in self._dereference: return '(*{})'.format(name) else: return name def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return "{} {} {}".format(lhs_code, op, rhs_code) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) op = expr.op rhs_code = self._print(expr.rhs) return "{} {} {};".format(lhs_code, op, rhs_code) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return 'for({target} in seq(from={start}, to={stop}, by={step}){{\n{body}\n}}'.format(target=target, start=start, stop=stop-1, step=step, body=body) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, str): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [ line.lstrip(' \t') for line in code ] increase = [ int(any(map(line.endswith, inc_token))) for line in code ] decrease = [ int(any(map(line.startswith, dec_token))) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line in ('', '\n'): pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def rcode(expr, assign_to=None, **settings): """Converts an expr to a string of r code Parameters ========== expr : Expr A SymPy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired R string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, rfunction_string)] or [(argument_test, rfunction_formater)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> rcode((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau^(7.0/2.0)' >>> rcode(sin(x), assign_to="s") 's = sin(x);' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the R-function takes a subset of the original arguments: >>> rcode(2**x + 3**x, user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(rcode(expr, assign_to=tau)) tau = ifelse(x > 0,x + 1,x); Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> rcode(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(rcode(mat, A)) A[0] = x^2; A[1] = ifelse(x > 0,x + 1,x); A[2] = sin(x); """ return RCodePrinter(settings).doprint(expr, assign_to) def print_rcode(expr, **settings): """Prints R representation of the given expression.""" print(rcode(expr, **settings))