import typing import sympy from sympy.core import Add, Mul from sympy.core import Symbol, Expr, Float, Rational, Integer, Basic from sympy.core.function import UndefinedFunction, Function from sympy.core.relational import Relational, Unequality, Equality, LessThan, GreaterThan, StrictLessThan, StrictGreaterThan from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp, log, Pow from sympy.functions.elementary.hyperbolic import sinh, cosh, tanh from sympy.functions.elementary.miscellaneous import Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import sin, cos, tan, asin, acos, atan, atan2 from sympy.logic.boolalg import And, Or, Xor, Implies, Boolean from sympy.logic.boolalg import BooleanTrue, BooleanFalse, BooleanFunction, Not, ITE from sympy.printing.printer import Printer from sympy.sets import Interval from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str from sympy.assumptions.assume import AppliedPredicate from sympy.assumptions.relation.binrel import AppliedBinaryRelation from sympy.assumptions.ask import Q from sympy.assumptions.relation.equality import StrictGreaterThanPredicate, StrictLessThanPredicate, GreaterThanPredicate, LessThanPredicate, EqualityPredicate class SMTLibPrinter(Printer): printmethod = "_smtlib" # based on dReal, an automated reasoning tool for solving problems that can be encoded as first-order logic formulas over the real numbers. # dReal's special strength is in handling problems that involve a wide range of nonlinear real functions. _default_settings: dict = { 'precision': None, 'known_types': { bool: 'Bool', int: 'Int', float: 'Real' }, 'known_constants': { # pi: 'MY_VARIABLE_PI_DECLARED_ELSEWHERE', }, 'known_functions': { Add: '+', Mul: '*', Equality: '=', LessThan: '<=', GreaterThan: '>=', StrictLessThan: '<', StrictGreaterThan: '>', EqualityPredicate(): '=', LessThanPredicate(): '<=', GreaterThanPredicate(): '>=', StrictLessThanPredicate(): '<', StrictGreaterThanPredicate(): '>', exp: 'exp', log: 'log', Abs: 'abs', sin: 'sin', cos: 'cos', tan: 'tan', asin: 'arcsin', acos: 'arccos', atan: 'arctan', atan2: 'arctan2', sinh: 'sinh', cosh: 'cosh', tanh: 'tanh', Min: 'min', Max: 'max', Pow: 'pow', And: 'and', Or: 'or', Xor: 'xor', Not: 'not', ITE: 'ite', Implies: '=>', } } symbol_table: dict def __init__(self, settings: typing.Optional[dict] = None, symbol_table=None): settings = settings or {} self.symbol_table = symbol_table or {} Printer.__init__(self, settings) self._precision = self._settings['precision'] self._known_types = dict(self._settings['known_types']) self._known_constants = dict(self._settings['known_constants']) self._known_functions = dict(self._settings['known_functions']) for _ in self._known_types.values(): assert self._is_legal_name(_) for _ in self._known_constants.values(): assert self._is_legal_name(_) # for _ in self._known_functions.values(): assert self._is_legal_name(_) # +, *, <, >, etc. def _is_legal_name(self, s: str): if not s: return False if s[0].isnumeric(): return False return all(_.isalnum() or _ == '_' for _ in s) def _s_expr(self, op: str, args: typing.Union[list, tuple]) -> str: args_str = ' '.join( a if isinstance(a, str) else self._print(a) for a in args ) return f'({op} {args_str})' def _print_Function(self, e): if e in self._known_functions: op = self._known_functions[e] elif type(e) in self._known_functions: op = self._known_functions[type(e)] elif type(type(e)) == UndefinedFunction: op = e.name elif isinstance(e, AppliedBinaryRelation) and e.function in self._known_functions: op = self._known_functions[e.function] return self._s_expr(op, e.arguments) else: op = self._known_functions[e] # throw KeyError return self._s_expr(op, e.args) def _print_Relational(self, e: Relational): return self._print_Function(e) def _print_BooleanFunction(self, e: BooleanFunction): return self._print_Function(e) def _print_Expr(self, e: Expr): return self._print_Function(e) def _print_Unequality(self, e: Unequality): if type(e) in self._known_functions: return self._print_Relational(e) # default else: eq_op = self._known_functions[Equality] not_op = self._known_functions[Not] return self._s_expr(not_op, [self._s_expr(eq_op, e.args)]) def _print_Piecewise(self, e: Piecewise): def _print_Piecewise_recursive(args: typing.Union[list, tuple]): e, c = args[0] if len(args) == 1: assert (c is True) or isinstance(c, BooleanTrue) return self._print(e) else: ite = self._known_functions[ITE] return self._s_expr(ite, [ c, e, _print_Piecewise_recursive(args[1:]) ]) return _print_Piecewise_recursive(e.args) def _print_Interval(self, e: Interval): if e.start.is_infinite and e.end.is_infinite: return '' elif e.start.is_infinite != e.end.is_infinite: raise ValueError(f'One-sided intervals (`{e}`) are not supported in SMT.') else: return f'[{e.start}, {e.end}]' def _print_AppliedPredicate(self, e: AppliedPredicate): if e.function == Q.positive: rel = Q.gt(e.arguments[0],0) elif e.function == Q.negative: rel = Q.lt(e.arguments[0], 0) elif e.function == Q.zero: rel = Q.eq(e.arguments[0], 0) elif e.function == Q.nonpositive: rel = Q.le(e.arguments[0], 0) elif e.function == Q.nonnegative: rel = Q.ge(e.arguments[0], 0) elif e.function == Q.nonzero: rel = Q.ne(e.arguments[0], 0) else: raise ValueError(f"Predicate (`{e}`) is not handled.") return self._print_AppliedBinaryRelation(rel) def _print_AppliedBinaryRelation(self, e: AppliedPredicate): if e.function == Q.ne: return self._print_Unequality(Unequality(*e.arguments)) else: return self._print_Function(e) # todo: Sympy does not support quantifiers yet as of 2022, but quantifiers can be handy in SMT. # For now, users can extend this class and build in their own quantifier support. # See `test_quantifier_extensions()` in test_smtlib.py for an example of how this might look. # def _print_ForAll(self, e: ForAll): # return self._s('forall', [ # self._s('', [ # self._s(sym.name, [self._type_name(sym), Interval(start, end)]) # for sym, start, end in e.limits # ]), # e.function # ]) def _print_BooleanTrue(self, x: BooleanTrue): return 'true' def _print_BooleanFalse(self, x: BooleanFalse): return 'false' def _print_Float(self, x: Float): dps = prec_to_dps(x._prec) str_real = mlib_to_str(x._mpf_, dps, strip_zeros=True, min_fixed=None, max_fixed=None) if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] mul = self._known_functions[Mul] pow = self._known_functions[Pow] return r"(%s %s (%s 10 %s))" % (mul, mant, pow, exp) elif str_real in ["+inf", "-inf"]: raise ValueError("Infinite values are not supported in SMT.") else: return str_real def _print_float(self, x: float): return self._print(Float(x)) def _print_Rational(self, x: Rational): return self._s_expr('/', [x.p, x.q]) def _print_Integer(self, x: Integer): assert x.q == 1 return str(x.p) def _print_int(self, x: int): return str(x) def _print_Symbol(self, x: Symbol): assert self._is_legal_name(x.name) return x.name def _print_NumberSymbol(self, x): name = self._known_constants.get(x) if name: return name else: f = x.evalf(self._precision) if self._precision else x.evalf() return self._print_Float(f) def _print_UndefinedFunction(self, x): assert self._is_legal_name(x.name) return x.name def _print_Exp1(self, x): return ( self._print_Function(exp(1, evaluate=False)) if exp in self._known_functions else self._print_NumberSymbol(x) ) def emptyPrinter(self, expr): raise NotImplementedError(f'Cannot convert `{repr(expr)}` of type `{type(expr)}` to SMT.') def smtlib_code( expr, auto_assert=True, auto_declare=True, precision=None, symbol_table=None, known_types=None, known_constants=None, known_functions=None, prefix_expressions=None, suffix_expressions=None, log_warn=None ): r"""Converts ``expr`` to a string of smtlib code. Parameters ========== expr : Expr | List[Expr] A SymPy expression or system to be converted. auto_assert : bool, optional If false, do not modify expr and produce only the S-Expression equivalent of expr. If true, assume expr is a system and assert each boolean element. auto_declare : bool, optional If false, do not produce declarations for the symbols used in expr. If true, prepend all necessary declarations for variables used in expr based on symbol_table. precision : integer, optional The ``evalf(..)`` precision for numbers such as pi. symbol_table : dict, optional A dictionary where keys are ``Symbol`` or ``Function`` instances and values are their Python type i.e. ``bool``, ``int``, ``float``, or ``Callable[...]``. If incomplete, an attempt will be made to infer types from ``expr``. known_types: dict, optional A dictionary where keys are ``bool``, ``int``, ``float`` etc. and values are their corresponding SMT type names. If not given, a partial listing compatible with several solvers will be used. known_functions : dict, optional A dictionary where keys are ``Function``, ``Relational``, ``BooleanFunction``, or ``Expr`` instances and values are their SMT string representations. If not given, a partial listing optimized for dReal solver (but compatible with others) will be used. known_constants: dict, optional A dictionary where keys are ``NumberSymbol`` instances and values are their SMT variable names. When using this feature, extra caution must be taken to avoid naming collisions between user symbols and listed constants. If not given, constants will be expanded inline i.e. ``3.14159`` instead of ``MY_SMT_VARIABLE_FOR_PI``. prefix_expressions: list, optional A list of lists of ``str`` and/or expressions to convert into SMTLib and prefix to the output. suffix_expressions: list, optional A list of lists of ``str`` and/or expressions to convert into SMTLib and postfix to the output. log_warn: lambda function, optional A function to record all warnings during potentially risky operations. Soundness is a core value in SMT solving, so it is good to log all assumptions made. Examples ======== >>> from sympy import smtlib_code, symbols, sin, Eq >>> x = symbols('x') >>> smtlib_code(sin(x).series(x).removeO(), log_warn=print) Could not infer type of `x`. Defaulting to float. Non-Boolean expression `x**5/120 - x**3/6 + x` will not be asserted. Converting to SMTLib verbatim. '(declare-const x Real)\n(+ x (* (/ -1 6) (pow x 3)) (* (/ 1 120) (pow x 5)))' >>> from sympy import Rational >>> x, y, tau = symbols("x, y, tau") >>> smtlib_code((2*tau)**Rational(7, 2), log_warn=print) Could not infer type of `tau`. Defaulting to float. Non-Boolean expression `8*sqrt(2)*tau**(7/2)` will not be asserted. Converting to SMTLib verbatim. '(declare-const tau Real)\n(* 8 (pow 2 (/ 1 2)) (pow tau (/ 7 2)))' ``Piecewise`` expressions are implemented with ``ite`` expressions by default. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> smtlib_code(Eq(pw, 3), symbol_table={x: float}, log_warn=print) '(declare-const x Real)\n(assert (= (ite (> x 0) (+ 1 x) x) 3))' Custom printing can be defined for certain types by passing a dictionary of PythonType : "SMT Name" to the ``known_types``, ``known_constants``, and ``known_functions`` kwargs. >>> from typing import Callable >>> from sympy import Function, Add >>> f = Function('f') >>> g = Function('g') >>> smt_builtin_funcs = { # functions our SMT solver will understand ... f: "existing_smtlib_fcn", ... Add: "sum", ... } >>> user_def_funcs = { # functions defined by the user must have their types specified explicitly ... g: Callable[[int], float], ... } >>> smtlib_code(f(x) + g(x), symbol_table=user_def_funcs, known_functions=smt_builtin_funcs, log_warn=print) Non-Boolean expression `f(x) + g(x)` will not be asserted. Converting to SMTLib verbatim. '(declare-const x Int)\n(declare-fun g (Int) Real)\n(sum (existing_smtlib_fcn x) (g x))' """ log_warn = log_warn or (lambda _: None) if not isinstance(expr, list): expr = [expr] expr = [ sympy.sympify(_, strict=True, evaluate=False, convert_xor=False) for _ in expr ] if not symbol_table: symbol_table = {} symbol_table = _auto_infer_smtlib_types( *expr, symbol_table=symbol_table ) # See [FALLBACK RULES] # Need SMTLibPrinter to populate known_functions and known_constants first. settings = {} if precision: settings['precision'] = precision del precision if known_types: settings['known_types'] = known_types del known_types if known_functions: settings['known_functions'] = known_functions del known_functions if known_constants: settings['known_constants'] = known_constants del known_constants if not prefix_expressions: prefix_expressions = [] if not suffix_expressions: suffix_expressions = [] p = SMTLibPrinter(settings, symbol_table) del symbol_table # [FALLBACK RULES] for e in expr: for sym in e.atoms(Symbol, Function): if ( sym.is_Symbol and sym not in p._known_constants and sym not in p.symbol_table ): log_warn(f"Could not infer type of `{sym}`. Defaulting to float.") p.symbol_table[sym] = float if ( sym.is_Function and type(sym) not in p._known_functions and type(sym) not in p.symbol_table and not sym.is_Piecewise ): raise TypeError( f"Unknown type of undefined function `{sym}`. " f"Must be mapped to ``str`` in known_functions or mapped to ``Callable[..]`` in symbol_table." ) declarations = [] if auto_declare: constants = {sym.name: sym for e in expr for sym in e.free_symbols if sym not in p._known_constants} functions = {fnc.name: fnc for e in expr for fnc in e.atoms(Function) if type(fnc) not in p._known_functions and not fnc.is_Piecewise} declarations = \ [ _auto_declare_smtlib(sym, p, log_warn) for sym in constants.values() ] + [ _auto_declare_smtlib(fnc, p, log_warn) for fnc in functions.values() ] declarations = [decl for decl in declarations if decl] if auto_assert: expr = [_auto_assert_smtlib(e, p, log_warn) for e in expr] # return SMTLibPrinter().doprint(expr) return '\n'.join([ # ';; PREFIX EXPRESSIONS', *[ e if isinstance(e, str) else p.doprint(e) for e in prefix_expressions ], # ';; DECLARATIONS', *sorted(e for e in declarations), # ';; EXPRESSIONS', *[ e if isinstance(e, str) else p.doprint(e) for e in expr ], # ';; SUFFIX EXPRESSIONS', *[ e if isinstance(e, str) else p.doprint(e) for e in suffix_expressions ], ]) def _auto_declare_smtlib(sym: typing.Union[Symbol, Function], p: SMTLibPrinter, log_warn: typing.Callable[[str], None]): if sym.is_Symbol: type_signature = p.symbol_table[sym] assert isinstance(type_signature, type) type_signature = p._known_types[type_signature] return p._s_expr('declare-const', [sym, type_signature]) elif sym.is_Function: type_signature = p.symbol_table[type(sym)] assert callable(type_signature) type_signature = [p._known_types[_] for _ in type_signature.__args__] assert len(type_signature) > 0 params_signature = f"({' '.join(type_signature[:-1])})" return_signature = type_signature[-1] return p._s_expr('declare-fun', [type(sym), params_signature, return_signature]) else: log_warn(f"Non-Symbol/Function `{sym}` will not be declared.") return None def _auto_assert_smtlib(e: Expr, p: SMTLibPrinter, log_warn: typing.Callable[[str], None]): if isinstance(e, Boolean) or ( e in p.symbol_table and p.symbol_table[e] == bool ) or ( e.is_Function and type(e) in p.symbol_table and p.symbol_table[type(e)].__args__[-1] == bool ): return p._s_expr('assert', [e]) else: log_warn(f"Non-Boolean expression `{e}` will not be asserted. Converting to SMTLib verbatim.") return e def _auto_infer_smtlib_types( *exprs: Basic, symbol_table: typing.Optional[dict] = None ) -> dict: # [TYPE INFERENCE RULES] # X is alone in an expr => X is bool # X in BooleanFunction.args => X is bool # X matches to a bool param of a symbol_table function => X is bool # X matches to an int param of a symbol_table function => X is int # X.is_integer => X is int # X == Y, where X is T => Y is T # [FALLBACK RULES] # see _auto_declare_smtlib(..) # X is not bool and X is not int and X is Symbol => X is float # else (e.g. X is Function) => error. must be specified explicitly. _symbols = dict(symbol_table) if symbol_table else {} def safe_update(syms: set, inf): for s in syms: assert s.is_Symbol if (old_type := _symbols.setdefault(s, inf)) != inf: raise TypeError(f"Could not infer type of `{s}`. Apparently both `{old_type}` and `{inf}`?") # EXPLICIT TYPES safe_update({ e for e in exprs if e.is_Symbol }, bool) safe_update({ symbol for e in exprs for boolfunc in e.atoms(BooleanFunction) for symbol in boolfunc.args if symbol.is_Symbol }, bool) safe_update({ symbol for e in exprs for boolfunc in e.atoms(Function) if type(boolfunc) in _symbols for symbol, param in zip(boolfunc.args, _symbols[type(boolfunc)].__args__) if symbol.is_Symbol and param == bool }, bool) safe_update({ symbol for e in exprs for intfunc in e.atoms(Function) if type(intfunc) in _symbols for symbol, param in zip(intfunc.args, _symbols[type(intfunc)].__args__) if symbol.is_Symbol and param == int }, int) safe_update({ symbol for e in exprs for symbol in e.atoms(Symbol) if symbol.is_integer }, int) safe_update({ symbol for e in exprs for symbol in e.atoms(Symbol) if symbol.is_real and not symbol.is_integer }, float) # EQUALITY RELATION RULE rels = [rel for expr in exprs for rel in expr.atoms(Equality)] rels = [ (rel.lhs, rel.rhs) for rel in rels if rel.lhs.is_Symbol ] + [ (rel.rhs, rel.lhs) for rel in rels if rel.rhs.is_Symbol ] for infer, reltd in rels: inference = ( _symbols[infer] if infer in _symbols else _symbols[reltd] if reltd in _symbols else _symbols[type(reltd)].__args__[-1] if reltd.is_Function and type(reltd) in _symbols else bool if reltd.is_Boolean else int if reltd.is_integer or reltd.is_Integer else float if reltd.is_real else None ) if inference: safe_update({infer}, inference) return _symbols