from __future__ import annotations # remove after python 3.11 from typing import List, Optional, Sequence, Tuple, TypeVar from .._C.libtriton import ir from . import core as tl from . import math T = TypeVar('T') class IncompatibleTypeErrorImpl(Exception): def __init__(self, type_a, type_b): self.type_a = type_a self.type_b = type_b self.message = "invalid operands of type " + self.type_a.__repr__() + " and " + self.type_b.__repr__() super(IncompatibleTypeErrorImpl, self).__init__(self.message) # ===----------------------------------------------------------------------===## # Programming Model # ===----------------------------------------------------------------------===## def program_id(axis: int, builder: ir.builder) -> tl.tensor: if axis not in (0, 1, 2): raise ValueError(f"program_id axis must be 0, 1, or 2 but got {axis}") return tl.tensor(builder.create_get_program_id(axis), tl.int32) def num_programs(axis: int, builder: ir.builder) -> tl.tensor: if axis not in (0, 1, 2): raise ValueError(f"num_programs axis must be 0, 1, or 2 but got {axis}") return tl.tensor(builder.create_get_num_programs(axis), tl.int32) # ===----------------------------------------------------------------------===// # Implicit Casting Utilities # ===----------------------------------------------------------------------===// def integer_promote_impl(a_ty: tl.dtype, b_ty: tl.dtype) -> tl.dtype: a_rank = a_ty.int_bitwidth b_rank = b_ty.int_bitwidth a_sn = a_ty.int_signedness b_sn = b_ty.int_signedness # Rules for signedness taken from "Usual arithmetic conversions" on # https://en.cppreference.com/w/c/language/conversion. if a_sn == b_sn: return a_ty if a_rank > b_rank else b_ty elif a_sn == tl.dtype.SIGNEDNESS.UNSIGNED: return a_ty if a_rank >= b_rank else b_ty elif b_sn == tl.dtype.SIGNEDNESS.UNSIGNED: return b_ty if b_rank >= a_rank else a_ty raise TypeError(f"unexpected signedness {a_sn} and {b_sn}") def computation_type_impl(a_ty: tl.dtype, b_ty: tl.dtype, div_or_mod: bool) -> tl.dtype: # 1) if one operand is double, the other is implicitly # converted to double if a_ty.is_fp64() or b_ty.is_fp64(): return tl.float64 # 2) if one operand is float, the other is implicitly # converted to float if a_ty.is_fp32() or b_ty.is_fp32(): return tl.float32 # 3 ) if one operand is half, the other is implicitly converted to half # unless we're doing / or %, which do not exist natively in PTX for fp16. # Supported PTX op: add, sub, mul, fma, neg, abs, min, max, tanh, ex2, setp if a_ty.is_fp16() or b_ty.is_fp16(): if div_or_mod: return tl.float32 else: return tl.float16 # 4) return bf16 only if both operands are of bf16 if a_ty.is_bf16() or b_ty.is_bf16(): if div_or_mod: return tl.float32 if a_ty.is_bf16() and b_ty.is_bf16(): return tl.bfloat16 return tl.float32 if not a_ty.is_int() or not b_ty.is_int(): raise TypeError(f"unexpected type {a_ty} and {b_ty}") # 5 ) both operands are integer and undergo # integer promotion if div_or_mod and a_ty.int_signedness != b_ty.int_signedness: raise TypeError("Cannot use /, #, or % with " + a_ty.__repr__() + " and " + b_ty.__repr__() + " because they have different signedness;" "this is unlikely to result in a useful answer. Cast them to the same signedness.") return integer_promote_impl(a_ty, b_ty) # ===----------------------------------------------------------------------===// # Binary Operators # ===----------------------------------------------------------------------===// def check_ptr_type_impl(type_a: tl.dtype, type_b: tl.dtype, allow_ptr_a: bool) -> None: if type_a.is_ptr(): if not allow_ptr_a: raise IncompatibleTypeErrorImpl(type_a, type_b) # T* + U* with T != U if type_b.is_ptr() and (type_a != type_b): raise IncompatibleTypeErrorImpl(type_a, type_b) # T* + float if type_b.is_floating(): raise IncompatibleTypeErrorImpl(type_a, type_b) def binary_op_type_checking_impl(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder, allow_lhs_ptr=False, allow_rhs_ptr=False, arithmetic_check=True, div_or_mod=False) -> Tuple[tl.tensor, tl.tensor]: # implicit broadcasting lhs, rhs = broadcast_impl_value(lhs, rhs, builder) # implicit typecasting lhs_sca_ty = lhs.type.scalar rhs_sca_ty = rhs.type.scalar check_ptr_type_impl(lhs_sca_ty, rhs_sca_ty, allow_lhs_ptr) check_ptr_type_impl(rhs_sca_ty, lhs_sca_ty, allow_rhs_ptr) if arithmetic_check and not lhs_sca_ty.is_ptr() and not rhs_sca_ty.is_ptr(): ret_sca_ty = computation_type_impl(lhs_sca_ty, rhs_sca_ty, div_or_mod) lhs = cast(lhs, ret_sca_ty, builder) rhs = cast(rhs, ret_sca_ty, builder) return lhs, rhs def add(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder, True, True) input_scalar_ty = input.type.scalar other_scalar_ty = other.type.scalar if input_scalar_ty.is_ptr() and other_scalar_ty.is_ptr(): raise TypeError("cannot add pointers together") # offset + ptr # ptr + offset if other_scalar_ty.is_ptr() and not input_scalar_ty.is_ptr(): input, other = other, input input_scalar_ty = input.type.scalar other_scalar_ty = other.type.scalar if input_scalar_ty.is_ptr(): return tl.tensor(builder.create_addptr(input.handle, other.handle), input.type) # float + float elif input_scalar_ty.is_floating(): return tl.tensor(builder.create_fadd(input.handle, other.handle), input.type) # int + int elif input_scalar_ty.is_int(): return tl.tensor(builder.create_add(input.handle, other.handle), input.type) raise TypeError(f"unexpected type {input_scalar_ty}") def sub(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder, True, False) scalar_ty = input.type.scalar # ptr - offset if scalar_ty.is_ptr(): return tl.tensor(builder.create_addptr(input.handle, minus(other, builder).handle), input.type) # float - float if scalar_ty.is_floating(): return tl.tensor(builder.create_fsub(input.handle, other.handle), input.type) # int - int elif scalar_ty.is_int(): return tl.tensor(builder.create_sub(input.handle, other.handle), input.type) raise TypeError(f"unexpected type {scalar_ty}") def mul(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float * float if scalar_ty.is_floating(): return tl.tensor(builder.create_fmul(input.handle, other.handle), input.type) # * int elif scalar_ty.is_int(): return tl.tensor(builder.create_mul(input.handle, other.handle), input.type) raise TypeError(f"unexpected type {scalar_ty}") def truediv(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True) input_scalar_ty = input.type.scalar other_scalar_ty = other.type.scalar # float / int if input_scalar_ty.is_floating() and other_scalar_ty.is_int(): other = cast(other, input_scalar_ty, builder) # int / float elif input_scalar_ty.is_int() and other_scalar_ty.is_floating(): input = cast(input, other_scalar_ty, builder) # int / int (cast to tl.float32) elif input_scalar_ty.is_int() and other_scalar_ty.is_int(): input = cast(input, tl.float32, builder) other = cast(other, tl.float32, builder) # float / float (cast to the highest exponent type) elif input_scalar_ty.is_floating() and other_scalar_ty.is_floating(): if input_scalar_ty.fp_mantissa_width > other_scalar_ty.fp_mantissa_width: other = cast(other, input_scalar_ty, builder) else: input = cast(input, other_scalar_ty, builder) # unreachable else: raise TypeError(f"unexpected type {input_scalar_ty}") return tl.tensor(builder.create_fdiv(input.handle, other.handle), input.type) def floordiv(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True) input_scalar_ty = input.type.scalar other_scalar_ty = other.type.scalar if input_scalar_ty.is_int() and other_scalar_ty.is_int(): ret_ty = integer_promote_impl(input_scalar_ty, other_scalar_ty) input = cast(input, ret_ty, builder) other = cast(other, ret_ty, builder) if ret_ty.is_int_signed(): return tl.tensor(builder.create_sdiv(input.handle, other.handle), input.type) else: return tl.tensor(builder.create_udiv(input.handle, other.handle), input.type) raise TypeError(f"unexpected type {input_scalar_ty}") def fdiv(input: tl.tensor, other: tl.tensor, ieee_rounding: bool, builder: ir.builder) -> tl.tensor: input_scalar_ty = input.type.scalar other_scalar_ty = other.type.scalar if not input_scalar_ty.is_floating() or not other_scalar_ty.is_floating(): raise TypeError("both operands of fdiv must have floating scalar type") input, other = binary_op_type_checking_impl(input, other, builder, False, False, False, True) ret = builder.create_fdiv(input.handle, other.handle) return tl.tensor(ret, input.type) def mod(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder, False, False, True, True) scalar_ty = input.type.scalar other_scalar_ty = other.type.scalar # float % float if scalar_ty.is_floating(): # input - input.div(other, rounding_mode="floor") * other ret = sub(input, mul(math.floor(fdiv(input, other, False, builder), _builder=builder), other, builder), builder) return ret # % int elif scalar_ty.is_int(): if scalar_ty.int_signedness != other_scalar_ty.int_signedness: raise TypeError("Cannot mod " + scalar_ty.__repr__() + " by " + other_scalar_ty.__repr__() + " " "because they have different signedness;" "this is unlikely to result in a useful answer. Cast them to the same signedness.") if scalar_ty.is_int_signed(): return tl.tensor(builder.create_srem(input.handle, other.handle), input.type) else: return tl.tensor(builder.create_urem(input.handle, other.handle), input.type) raise TypeError(f"unexpected type {scalar_ty}") ############## # other arithmetic ops ############## def minimum(x: tl.tensor, y: tl.tensor, propagate_nan: tl.PropagateNan, builder: ir.builder): x, y = binary_op_type_checking_impl(x, y, builder) dtype = x.dtype if dtype.is_floating(): if propagate_nan == tl.PropagateNan.ALL: return tl.tensor(builder.create_minimumf(x.handle, y.handle), x.type) elif propagate_nan == tl.PropagateNan.NONE: return tl.tensor(builder.create_minnumf(x.handle, y.handle), x.type) else: raise ValueError(f"Unexpected propagate_nan {propagate_nan}") elif dtype.is_int_signed(): return tl.tensor(builder.create_minsi(x.handle, y.handle), x.type) elif dtype.is_int_unsigned(): return tl.tensor(builder.create_minui(x.handle, y.handle), x.type) else: raise TypeError(f"Unexpected dtype {dtype}") def maximum(x: tl.tensor, y: tl.tensor, propagate_nan: tl.PropagateNan, builder: ir.builder): x, y = binary_op_type_checking_impl(x, y, builder) dtype = x.dtype if dtype.is_floating(): if propagate_nan == tl.PropagateNan.ALL: return tl.tensor(builder.create_maximumf(x.handle, y.handle), x.type) elif propagate_nan == tl.PropagateNan.NONE: return tl.tensor(builder.create_maxnumf(x.handle, y.handle), x.type) else: raise ValueError(f"Unexpected propagate_nan {propagate_nan}") elif dtype.is_int_signed(): return tl.tensor(builder.create_maxsi(x.handle, y.handle), x.type) elif dtype.is_int_unsigned(): return tl.tensor(builder.create_maxui(x.handle, y.handle), x.type) else: raise TypeError(f"Unexpected dtype {dtype}") def clamp(x: tl.tensor, min: tl.tensor, max: tl.tensor, propagate_nan: tl.PropagateNan, builder: ir.builder): min, max = binary_op_type_checking_impl(min, max, builder) x, min = binary_op_type_checking_impl(x, min, builder) x, max = binary_op_type_checking_impl(x, max, builder) dtype = x.dtype if dtype.is_floating(): return tl.tensor(builder.create_clampf(x.handle, min.handle, max.handle, propagate_nan), x.type) else: raise TypeError(f"Unexpected dtype {dtype}. Only floating point clamp is supported") ############## # bitwise ops ############## def bitwise_op_type_checking_impl(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> Tuple[tl.tensor, tl.tensor]: input, other = binary_op_type_checking_impl(input, other, builder, False, False, False) input_sca_ty = input.type.scalar other_sca_ty = other.type.scalar if not input_sca_ty.is_int() or not other_sca_ty.is_int(): raise IncompatibleTypeErrorImpl(input_sca_ty, other_sca_ty) ret_sca_ty = integer_promote_impl(input_sca_ty, other_sca_ty) if ret_sca_ty != input_sca_ty: input = cast(input, ret_sca_ty, builder) if ret_sca_ty != other_sca_ty: other = cast(other, ret_sca_ty, builder) return input, other def and_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = bitwise_op_type_checking_impl(input, other, builder) return tl.tensor(builder.create_and(input.handle, other.handle), input.type) def or_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = bitwise_op_type_checking_impl(input, other, builder) return tl.tensor(builder.create_or(input.handle, other.handle), input.type) def xor_(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = bitwise_op_type_checking_impl(input, other, builder) return tl.tensor(builder.create_xor(input.handle, other.handle), input.type) def logical_and(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: if not input.type.is_int1(): input = bitcast(input, tl.dtype("int1"), builder) if not other.type.is_int1(): other = bitcast(other, tl.dtype("int1"), builder) return and_(input, other, builder) def logical_or(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: if not input.type.is_int1(): input = bitcast(input, tl.dtype("int1"), builder) if not other.type.is_int1(): other = bitcast(other, tl.dtype("int1"), builder) return or_(input, other, builder) def not_(input: tl.tensor, builder: ir.builder): if not input.type.is_int1(): input = bitcast(input, tl.dtype("int1"), builder) return invert(input, builder) def lshr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = bitwise_op_type_checking_impl(input, other, builder) return tl.tensor(builder.create_lshr(input.handle, other.handle), input.type) def ashr(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = bitwise_op_type_checking_impl(input, other, builder) return tl.tensor(builder.create_ashr(input.handle, other.handle), input.type) def shl(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = bitwise_op_type_checking_impl(input, other, builder) return tl.tensor(builder.create_shl(input.handle, other.handle), input.type) # ===----------------------------------------------------------------------===// # Unary Operators # ===----------------------------------------------------------------------===// def plus(input: tl.tensor) -> tl.tensor: return input def minus(input: tl.tensor, builder: ir.builder) -> tl.tensor: input_sca_ty = input.type.scalar if input_sca_ty.is_ptr(): raise ValueError("wrong type argument to unary minus (" + input_sca_ty.__repr__() + ")") _0 = tl.tensor(builder.get_null_value(input_sca_ty.to_ir(builder)), input_sca_ty) return sub(_0, input, builder) def invert(input: tl.tensor, builder: tl.tensor) -> tl.tensor: input_sca_ty = input.type.scalar if input_sca_ty.is_ptr() or input_sca_ty.is_floating(): raise ValueError("wrong type argument to unary invert (" + input_sca_ty.__repr__() + ")") _1 = tl.tensor(builder.get_all_ones_value(input_sca_ty.to_ir(builder)), input_sca_ty) return xor_(input, _1, builder) # ===----------------------------------------------------------------------===// # Comparison Operators # ===----------------------------------------------------------------------===// def _bool_like(v: tl.tensor) -> tl.block_type: if not v.type.is_block(): return tl.int1 shape = v.type.shape return tl.block_type(tl.int1, shape) def greater_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float > float if scalar_ty.is_floating(): return tl.tensor(builder.create_fcmpOGT(input.handle, other.handle), _bool_like(input)) # > int elif scalar_ty.is_int(): if scalar_ty.is_int_signed(): return tl.tensor(builder.create_icmpSGT(input.handle, other.handle), _bool_like(input)) else: return tl.tensor(builder.create_icmpUGT(input.handle, other.handle), _bool_like(input)) raise TypeError(f"unexpected type {scalar_ty}") def greater_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float >= float if scalar_ty.is_floating(): return tl.tensor(builder.create_fcmpOGE(input.handle, other.handle), _bool_like(input)) # >= int elif scalar_ty.is_int(): if scalar_ty.is_int_signed(): return tl.tensor(builder.create_icmpSGE(input.handle, other.handle), _bool_like(input)) else: return tl.tensor(builder.create_icmpUGE(input.handle, other.handle), _bool_like(input)) raise TypeError(f"unexpected type {scalar_ty}") def less_than(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float < float if scalar_ty.is_floating(): return tl.tensor(builder.create_fcmpOLT(input.handle, other.handle), _bool_like(input)) # < int elif scalar_ty.is_int(): if scalar_ty.is_int_signed(): return tl.tensor(builder.create_icmpSLT(input.handle, other.handle), _bool_like(input)) else: return tl.tensor(builder.create_icmpULT(input.handle, other.handle), _bool_like(input)) raise TypeError(f"unexpected type {scalar_ty}") def less_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float < float if scalar_ty.is_floating(): return tl.tensor(builder.create_fcmpOLE(input.handle, other.handle), _bool_like(input)) # < int elif scalar_ty.is_int(): if scalar_ty.is_int_signed(): return tl.tensor(builder.create_icmpSLE(input.handle, other.handle), _bool_like(input)) else: return tl.tensor(builder.create_icmpULE(input.handle, other.handle), _bool_like(input)) raise TypeError(f"unexpected type {scalar_ty}") def equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float == float if scalar_ty.is_floating(): return tl.tensor(builder.create_fcmpOEQ(input.handle, other.handle), _bool_like(input)) # == int elif scalar_ty.is_int(): return tl.tensor(builder.create_icmpEQ(input.handle, other.handle), _bool_like(input)) raise TypeError(f"unexpected type {scalar_ty}") def not_equal(input: tl.tensor, other: tl.tensor, builder: ir.builder) -> tl.tensor: input, other = binary_op_type_checking_impl(input, other, builder) scalar_ty = input.type.scalar # float == float if scalar_ty.is_floating(): return tl.tensor(builder.create_fcmpUNE(input.handle, other.handle), _bool_like(input)) # == int elif scalar_ty.is_int(): return tl.tensor(builder.create_icmpNE(input.handle, other.handle), _bool_like(input)) raise TypeError(f"unexpected type {scalar_ty}") # ===----------------------------------------------------------------------===// # Block Creation # ===----------------------------------------------------------------------===// def arange(start: int, end: int, builder: ir.builder) -> tl.tensor: if not isinstance(start, int) or not isinstance(end, int): raise ValueError("arange's arguments must be of type tl.constexpr") is_start_int64 = bool(start >> 32) is_end_int64 = bool(end >> 32) if is_start_int64 or is_end_int64: raise ValueError("arange must fit in int32") if end <= start: raise ValueError("arange's end argument must be greater than the start argument") range = end - start if (range & (range - 1)) != 0: raise ValueError("arange's range must be a power of 2") shape = [range] ret_ty = tl.block_type(tl.int32, shape) return tl.tensor(builder.create_make_range(start, end), ret_ty) def full(shape: List[int], value, dtype: tl.dtype, builder: ir.builder) -> tl.tensor: if isinstance(value, tl.tensor): assert value.numel.value == 1, "only accepts size-1 tensor" value = cast(value, dtype, builder) else: # scalar if dtype is None: raise ValueError("dtype must be specified when value is not a tensor") if value == 0: value = builder.get_null_value(dtype.to_ir(builder)) else: get_value_fn = getattr(builder, f"get_{dtype.name}") value = get_value_fn(value) value = tl.tensor(value, dtype) return splat(value, shape, builder) # ===----------------------------------------------------------------------===// # Shape Manipulation # ===----------------------------------------------------------------------===// def splat(value: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor: assert not value.type.is_block(), "Cannot splat a block tensor" if len(shape) == 0: return value ret_ty = tl.block_type(value.dtype, shape) return tl.tensor(builder.create_splat(value.handle, shape), ret_ty) def reshape(input: tl.tensor, dst_shape: List[int], can_reorder: bool, builder: ir.builder) -> tl.tensor: numel = 1 for s in dst_shape: numel *= s if input.type.numel != numel: raise ValueError("reshape() cannot change total number of elements in tensor") ret_ty = tl.block_type(input.type.scalar, dst_shape) return tl.tensor(builder.create_reshape(input.handle, dst_shape, can_reorder), ret_ty) def expand_dims(input: tl.tensor, axis: int, builder: ir.builder) -> tl.tensor: dst_shape = [tl._constexpr_to_value(x) for x in input.shape] dst_shape.insert(axis, 1) if not input.type.is_block(): return splat(input, shape=dst_shape, builder=builder) ret_ty = tl.block_type(input.type.scalar, dst_shape) return tl.tensor(builder.create_expand_dims(input.handle, axis), ret_ty) def cat(lhs: tl.tensor, rhs: tl.tensor, can_reorder: bool, builder: ir.builder) -> tl.tensor: assert can_reorder, "current implementation of `cat` always may reorder elements" assert len(lhs.shape) == 1 ret_type = tl.block_type(lhs.type.scalar, [lhs.shape[0] + rhs.shape[0]]) return tl.tensor(builder.create_cat(lhs.handle, rhs.handle), ret_type) def join(a: tl.tensor, b: tl.tensor, builder: ir.builder) -> tl.tensor: a, b = broadcast_impl_value(a, b, builder) # The IR can't handle joining two scalars, so upcast them to 1D tensors, # then downcast the result. was_rank_1 = a.shape == [] if was_rank_1: a = expand_dims(a, 0, builder) b = expand_dims(b, 0, builder) if isinstance(a.shape[-1], tl.constexpr): two = tl.constexpr(2) else: two = 2 new_shape = a.shape + [two] ret_type = tl.block_type(a.type.scalar, new_shape) ret = tl.tensor(builder.create_join(a.handle, b.handle), ret_type) if was_rank_1: ret = reshape(ret, [2], can_reorder=False, builder=builder) return ret def split(a: tl.tensor, builder: ir.builder) -> Tuple[tl.tensor, tl.tensor]: assert (len(a.shape) > 0) assert (tl._constexpr_to_value(a.shape[-1]) == 2) new_shape = a.shape[:-1] ret_type = tl.block_type(a.type.scalar, new_shape) outLHS, outRHS = builder.create_split(a.handle) return ( tl.tensor(outLHS, ret_type), tl.tensor(outRHS, ret_type), ) def permute(input: tl.tensor, dims: Tuple[int], builder: ir.builder) -> tl.tensor: if len(input.shape) != len(dims): raise ValueError("permute dims must have the same length as input shape") if sorted(tl._constexpr_to_value(d) for d in dims) != list(range(len(dims))): raise ValueError(f"permute dims must be a permutation of 0, 1, ..., n-1, but were {dims}") ret_type = tl.block_type(input.type.scalar, [input.shape[d] for d in dims]) return tl.tensor(builder.create_trans(input.handle, dims), ret_type) def broadcast_impl_shape(input: tl.tensor, shape: List[int], builder: ir.builder) -> tl.tensor: if not input.type.is_block(): ret_ty = tl.block_type(input.type, shape) return tl.tensor(builder.create_splat(input.handle, shape), ret_ty) src_shape = input.type.get_block_shapes() if len(src_shape) != len(shape): raise ValueError(f"Cannot broadcast, rank mismatch: {src_shape}, {shape}") if shape == src_shape: return input for i, item in enumerate(src_shape): if shape[i] != item and item != 1: raise ValueError(f"Cannot broadcast, the expanded size of the tensor ({shape[i]})" f" must match the existing size ({item}) at non-singleton dimension" f" {i}: {src_shape}, {shape}") ret_ty = tl.block_type(input.type.scalar, shape) return tl.tensor(builder.create_broadcast(input.handle, shape), ret_ty) def broadcast_impl_value(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder) -> tl.tensor: lhs_ty = lhs.type rhs_ty = rhs.type # make_shape_compatible(block, scalar) if lhs_ty.is_block() and not rhs_ty.is_block(): rhs_ty = tl.block_type(rhs_ty.scalar, lhs_ty.shape) rhs = tl.tensor(builder.create_splat(rhs.handle, lhs_ty.get_block_shapes()), rhs_ty) # make_shape_compatible(scalar, block) elif not lhs_ty.is_block() and rhs_ty.is_block(): lhs_ty = tl.block_type(lhs_ty.scalar, rhs_ty.shape) lhs = tl.tensor(builder.create_splat(lhs.handle, rhs_ty.get_block_shapes()), lhs_ty) # make_shape_compatible(block, block) elif lhs_ty.is_block() and rhs_ty.is_block(): lhs_shape = lhs_ty.get_block_shapes() rhs_shape = rhs_ty.get_block_shapes() if len(lhs_shape) < len(rhs_shape): # Add new axes to lhs for _ in range(len(lhs_shape), len(rhs_shape)): lhs = tl.tensor(builder.create_expand_dims(lhs.handle, 0), tl.block_type(lhs_ty.scalar, [1] + lhs_shape)) lhs_ty = lhs.type lhs_shape = lhs_ty.get_block_shapes() elif len(rhs_shape) < len(lhs_shape): # Add new axes to rhs for _ in range(len(rhs_shape), len(lhs_shape)): rhs = tl.tensor(builder.create_expand_dims(rhs.handle, 0), tl.block_type(rhs_ty.scalar, [1] + rhs_shape)) rhs_ty = rhs.type rhs_shape = rhs_ty.get_block_shapes() assert len(rhs_shape) == len(lhs_shape) ret_shape = [] for i, left in enumerate(lhs_shape): right = rhs_shape[i] if left == 1: ret_shape.append(right) elif (right == 1) or (right == left): ret_shape.append(left) else: raise ValueError("Cannot make_shape_compatible: incompatible dimensions " "at index " + str(i) + ": " + str(left) + " and " + str(right)) if lhs_shape != ret_shape: ret_ty = tl.block_type(lhs_ty.scalar, ret_shape) lhs = tl.tensor(builder.create_broadcast(lhs.handle, ret_shape), ret_ty) if rhs_shape != ret_shape: ret_ty = tl.block_type(rhs_ty.scalar, ret_shape) rhs = tl.tensor(builder.create_broadcast(rhs.handle, ret_shape), ret_ty) # (scalar, scalar) => returns original blocks return lhs, rhs ####### # cast ####### def _str_to_rounding_mode(rounding_mode: Optional[str]): if rounding_mode is None: return None if rounding_mode == 'rtne': return ir.ROUNDING_MODE.RTNE if rounding_mode == 'rtz': return ir.ROUNDING_MODE.RTZ raise ValueError(f"Invalid rounding mode: {rounding_mode}. Supported rounding modes are 'rtne' and 'rtz'.") def bitcast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder) -> tl.tensor: src_ty = input.type if src_ty.is_block(): dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes()) if src_ty == dst_ty: return input src_sca_ty = src_ty.scalar dst_sca_ty = dst_ty.scalar if src_sca_ty.is_ptr() or dst_sca_ty.is_ptr(): return cast(input, dst_ty, builder) # Bitcast src_bits = src_sca_ty.primitive_bitwidth dst_bits = dst_sca_ty.primitive_bitwidth if src_bits != dst_bits: raise ValueError("Cannot bitcast data-type of size " + str(src_bits) + " to " "data-type of size " + str(dst_bits)) return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty) def cast(input: tl.tensor, dst_ty: tl.dtype, builder: ir.builder, fp_downcast_rounding: Optional[str] = None) -> tl.tensor: src_ty = input.type if isinstance(dst_ty, tl.constexpr): dst_ty = dst_ty.value if isinstance(fp_downcast_rounding, tl.constexpr): fp_downcast_rounding = fp_downcast_rounding.value if src_ty.is_block(): dst_ty = tl.block_type(dst_ty.scalar, input.type.get_block_shapes()) if src_ty == dst_ty: return input src_sca_ty = src_ty.scalar dst_sca_ty = dst_ty.scalar # For fp downcasting default rounding mode should be RTNE, for all other conversions it should # not be set fp_downcast_rounding = _str_to_rounding_mode(fp_downcast_rounding) use_custom_rounding = False if dst_sca_ty.is_floating() and src_sca_ty.is_floating( ) and dst_sca_ty.primitive_bitwidth < src_sca_ty.primitive_bitwidth: if fp_downcast_rounding is None: fp_downcast_rounding = ir.ROUNDING_MODE.RTNE elif fp_downcast_rounding != ir.ROUNDING_MODE.RTNE: use_custom_rounding = True else: if fp_downcast_rounding is not None: raise ValueError("fp_downcast_rounding should be set only for truncating fp conversions. " "Source scalar type is " + str(src_sca_ty) + " and destination type is " + str(dst_sca_ty)) if (src_sca_ty.is_fp8e4nv() or dst_sca_ty.is_fp8e4nv()): assert builder.options.allow_fp8e4nv, "fp8e4nv data type is not supported on CUDA arch < 89" if (src_sca_ty.is_fp8e4b15() or dst_sca_ty.is_fp8e4b15()): assert builder.codegen_fns.get( "convert_custom_types") is not None, "target doesn't provide conversion for this type." return builder.codegen_fns["convert_custom_types"](input, dst_ty, fp_downcast_rounding, _builder=builder) # Casting with customized floating types involved: fp8 <=> bf16, fp16, fp32, fp64 # and non-default rounding modes for downcasting if (src_sca_ty.is_fp8() and dst_sca_ty.is_floating()) or \ (src_sca_ty.is_floating() and dst_sca_ty.is_fp8()) or \ use_custom_rounding: return tl.tensor(builder.create_fp_to_fp(input.handle, dst_ty.to_ir(builder), fp_downcast_rounding), dst_ty) # bf16 <=> (not fp32) if (src_sca_ty.is_fp16() and not dst_sca_ty.is_fp32()) or \ (src_sca_ty.is_bf16() and not dst_sca_ty.is_fp32()): return cast(cast(input, tl.float32, builder), dst_sca_ty, builder) # Standard floating types' casting: truncation # fp64 => fp32, fp16, bf16 # fp32 => fp16, bf16 truncate_fp = src_sca_ty.is_floating() and \ dst_sca_ty.is_floating() and \ src_sca_ty.primitive_bitwidth > dst_sca_ty.primitive_bitwidth if truncate_fp: return tl.tensor(builder.create_fp_trunc(input.handle, dst_ty.to_ir(builder)), dst_ty) # Standard floating types' casting: extension # fp32 => fp64 # fp16 => fp32, fp64 # bf16 => fp32, fp64 ext_fp = src_sca_ty.is_floating() and \ dst_sca_ty.is_floating() and \ src_sca_ty.primitive_bitwidth < dst_sca_ty.primitive_bitwidth if ext_fp: return tl.tensor(builder.create_fp_ext(input.handle, dst_ty.to_ir(builder)), dst_ty) # Casting between integer types if src_sca_ty.is_int() and dst_sca_ty.is_int() and \ (src_sca_ty.int_bitwidth != dst_sca_ty.int_bitwidth or src_sca_ty.int_signedness != dst_sca_ty.int_signedness): sign_extend = src_sca_ty.is_int_signed() and not src_sca_ty.is_bool() if dst_sca_ty.is_bool(): ty = input.dtype.to_ir(builder) _0 = tl.tensor(builder.get_null_value(ty), input.dtype) return not_equal(input, _0, builder) else: return tl.tensor(builder.create_int_cast(input.handle, dst_ty.to_ir(builder), sign_extend), dst_ty) # Casting standard floating types to integer types if src_sca_ty.is_standard_floating() and dst_sca_ty.is_int(): if dst_sca_ty.is_bool(): ty = input.dtype.to_ir(builder) _0 = tl.tensor(builder.get_null_value(ty), input.dtype) return not_equal(input, _0, builder) elif dst_sca_ty.is_int_signed(): return tl.tensor(builder.create_fp_to_si(input.handle, dst_ty.to_ir(builder)), dst_ty) else: return tl.tensor(builder.create_fp_to_ui(input.handle, dst_ty.to_ir(builder)), dst_ty) # Casting integer types to standard floating types if src_sca_ty.is_int() and dst_sca_ty.is_standard_floating(): if src_sca_ty.is_bool() or not src_sca_ty.is_int_signed(): return tl.tensor(builder.create_ui_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty) else: return tl.tensor(builder.create_si_to_fp(input.handle, dst_ty.to_ir(builder)), dst_ty) # Casting pointer types to integer types if src_sca_ty.is_ptr() and dst_sca_ty.is_int(): bitwidth = dst_sca_ty.int_bitwidth if bitwidth == 64: return tl.tensor(builder.create_ptr_to_int(input.handle, dst_ty.to_ir(builder)), dst_ty) if bitwidth == 1: return not_equal(cast(input, tl.int64, builder), tl.tensor(builder.get_int64(0), tl.int64), builder) # Casting integer types to pointer types if src_sca_ty.is_int() and dst_sca_ty.is_ptr(): return tl.tensor(builder.create_int_to_ptr(input.handle, dst_ty.to_ir(builder)), dst_ty) # Casting pointer types to pointer types if src_sca_ty.is_ptr() and dst_sca_ty.is_ptr(): return tl.tensor(builder.create_bitcast(input.handle, dst_ty.to_ir(builder)), dst_ty) assert False, f'cannot cast {input} to {dst_ty}' # ===----------------------------------------------------------------------===// # Memory Operators # ===----------------------------------------------------------------------===// def _str_to_load_cache_modifier(cache_modifier): cache = ir.CACHE_MODIFIER.NONE # default if cache_modifier: if cache_modifier == ".ca": cache = ir.CACHE_MODIFIER.CA elif cache_modifier == ".cg": cache = ir.CACHE_MODIFIER.CG else: raise ValueError(f"Cache modifier {cache_modifier} not supported") return cache def _str_to_store_cache_modifier(cache_modifier): cache = ir.CACHE_MODIFIER.NONE # default if cache_modifier: if cache_modifier == ".wb": cache = ir.CACHE_MODIFIER.WB elif cache_modifier == ".cg": cache = ir.CACHE_MODIFIER.CG elif cache_modifier == ".cs": cache = ir.CACHE_MODIFIER.CS elif cache_modifier == ".wt": cache = ir.CACHE_MODIFIER.WT else: raise ValueError(f"Cache modifier {cache_modifier} not supported") return cache def _str_to_eviction_policy(eviction_policy): eviction = ir.EVICTION_POLICY.NORMAL # default if eviction_policy: if eviction_policy == "evict_last": eviction = ir.EVICTION_POLICY.EVICT_LAST elif eviction_policy == "evict_first": eviction = ir.EVICTION_POLICY.EVICT_FIRST else: raise ValueError(f"Eviction policy {eviction_policy} not supported") return eviction def _str_to_padding_option(padding_option): padding = None # default if padding_option: if padding_option == "zero": padding = ir.PADDING_OPTION.PAD_ZERO elif padding_option == "nan": padding = ir.PADDING_OPTION.PAD_NAN else: raise ValueError(f"Padding option {padding_option} not supported") return padding def _str_to_sem(sem_option): sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE if sem_option: if sem_option == "acquire": sem = ir.MEM_SEMANTIC.ACQUIRE elif sem_option == "release": sem = ir.MEM_SEMANTIC.RELEASE elif sem_option == "acq_rel": sem = ir.MEM_SEMANTIC.ACQUIRE_RELEASE elif sem_option == "relaxed": sem = ir.MEM_SEMANTIC.RELAXED else: raise ValueError(f"Memory semantic {sem_option} not supported") return sem def _str_to_scope(scope_option): scope = ir.MEM_SYNC_SCOPE.GPU if scope_option: if scope_option == "gpu": scope = ir.MEM_SYNC_SCOPE.GPU elif scope_option == "cta": scope = ir.MEM_SYNC_SCOPE.CTA elif scope_option == "sys": scope = ir.MEM_SYNC_SCOPE.SYSTEM else: raise ValueError(f"Memory semantic {scope_option} not supported") return scope def _canonicalize_boundary_check(boundary_check, block_shape): if boundary_check: if not hasattr(boundary_check, "__iter__"): boundary_check = [boundary_check] boundary_check = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in boundary_check] for dim in boundary_check: assert isinstance(dim, int) and 0 <= dim < len(block_shape) assert len(boundary_check) > 0 assert len(boundary_check) == len(set(boundary_check)), "Duplicate dimension in `boundary_check`" return sorted(boundary_check) return () def _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder): # Load by a block pointer: `pointer_type>` # Block pointer can not have `mask` and `other` arguments if mask is not None or other is not None: raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers") elt_ty = ptr.type.element_ty.element_ty assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`" if elt_ty.is_int() and padding == ir.PADDING_OPTION.PAD_NAN: raise ValueError("Padding option `nan` is not supported for integer block pointers") # `dst_ty` is de-referenced type of the pointer type dst_ty = ptr.type.element_ty # Check `boundary_check` argument boundary_check = _canonicalize_boundary_check(boundary_check, dst_ty.get_block_shapes()) # Build IR return tl.tensor( builder.create_tensor_pointer_load(ptr.handle, boundary_check, padding, cache, eviction, is_volatile), dst_ty) def _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder): # Load by a tensor of pointers or a pointer of scalar: `block_type>` or `pointer_type<>` if not ptr.type.scalar.is_ptr(): raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.load`") # Check `mask`, `other`, `boundary_check`, and `padding` arguments if mask is None and other is not None: raise ValueError("`other` cannot be provided without `mask`") if padding or boundary_check: raise ValueError("`padding_option` or `boundary_check` argument is not supported for loading a tensor of" "pointers or loading a scalar. Because the compiler does not know the boundary; please " "use block pointers (defined by `make_block_ptr`) instead") # For a pointer of scalar, check the type of `mask` and `other` if not ptr.type.is_block(): if mask and mask.type.is_block(): raise ValueError("Mask argument cannot be block type if pointer argument is not a block") if other and other.type.is_block(): raise ValueError("Other argument cannot be block type if pointer argument is not a block") # Make `mask` and `other` into the same shape as `ptr` if ptr.type.is_block(): if mask is not None: mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder) if other is not None: other = broadcast_impl_shape(other, ptr.type.get_block_shapes(), builder) # Get `pointer_type` and `elt_ty` ptr_ty = ptr.type.scalar elt_ty = ptr_ty.element_ty # Treat `pointer_type` as `pointer_type` if elt_ty == tl.int1: elt_ty = tl.int8 ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space) ptr = cast(ptr, ptr_ty, builder) # Cast `other` into `ele_ty` type if other is not None: other = cast(other, elt_ty, builder) # Create loaded result type `dst_ty` if ptr.type.is_block(): shape = ptr.type.get_block_shapes() dst_ty = tl.block_type(elt_ty, shape) else: # Load by de-referencing the pointer of scalar dst_ty = elt_ty # Build IR if mask is None: return tl.tensor(builder.create_load(ptr.handle, cache, eviction, is_volatile), dst_ty) else: return tl.tensor( builder.create_masked_load(ptr.handle, mask.handle, other.handle if other else None, cache, eviction, is_volatile), dst_ty) def load(ptr: tl.tensor, mask: Optional[tl.tensor], other: Optional[tl.tensor], boundary_check: Tuple, padding_option: str, cache_modifier: str, eviction_policy: str, is_volatile: bool, builder: ir.builder) -> tl.tensor: # Cache, eviction and padding options cache = _str_to_load_cache_modifier(cache_modifier) eviction = _str_to_eviction_policy(eviction_policy) padding = _str_to_padding_option(padding_option) if ptr.type.is_ptr() and ptr.type.element_ty.is_block(): # Load by a block pointer: `pointer_type>` return _load_block_pointer(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder) else: # Load by a tensor of pointers or a pointer of scalar: `block_type>` or `pointer_type<>` return _load_legacy(ptr, mask, other, boundary_check, padding, cache, eviction, is_volatile, builder) def descriptor_load(desc_ptr: tl.tensor, offsets, cache_modifier: str, eviction_policy: str, type, builder: ir.builder) -> tl.tensor: offsets = _convert_to_ir_values(builder, offsets, require_i64=False) x = builder.create_descriptor_load(desc_ptr.handle, offsets, type.to_ir(builder), _str_to_load_cache_modifier(cache_modifier), _str_to_eviction_policy(eviction_policy)) return tl.tensor(x, type) def descriptor_store(desc_ptr: tl.tensor, value: tl.tensor, offsets, builder: ir.builder) -> tl.tensor: offsets = _convert_to_ir_values(builder, offsets, require_i64=False) return tl.tensor(builder.create_descriptor_store(desc_ptr.handle, value.handle, offsets), tl.void) def _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder): # Store by a block pointer: `pointer_type>` # Block pointers can not have the `mask` argument if mask is not None: raise ValueError("`mask` and `other` arguments cannot be specified for loading block pointers") # Check same shape and element type block_shape = ptr.type.element_ty.get_block_shapes() if not val.type.is_block(): val = broadcast_impl_shape(val, block_shape, builder) assert val.type.is_block(), "Value argument must be block type or a scalar" assert block_shape == val.type.get_block_shapes( ), f"Block shape({block_shape}) and value shape({val.type.get_block_shapes()}) mismatch" assert ptr.type.element_ty.element_ty == val.type.element_ty, f"Block element type({ptr.type.element_ty.element_ty}) and value element type({val.type.element_ty}) mismatch" elt_ty = ptr.type.element_ty.element_ty assert elt_ty != tl.int1, "`tl.int1` should be rewrited in `tl.make_block_ptr`" # Check `boundary_check` argument boundary_check = _canonicalize_boundary_check(boundary_check, block_shape) # Cast to target data type val = cast(val, elt_ty, builder) # Build IR return tl.tensor(builder.create_tensor_pointer_store(ptr.handle, val.handle, boundary_check, cache, eviction), tl.void) def _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder): # Store by a tensor of pointers or a pointer of scalar: `block_type>` or `pointer_type<>` if not ptr.type.scalar.is_ptr(): raise ValueError(f"Unsupported ptr type {ptr.type.__repr__()} in `tl.store`") # Check `boundary_check` argument if boundary_check: raise ValueError("`boundary_check` argument is not supported for storing a tensor of pointers or storing a " "scalar. Because the compiler does not know the boundary; please use block pointers " "(defined by `make_block_ptr`) instead") # For a pointer of scalar, check the type of `val` and `mask` if not ptr.type.is_block(): if val.type.is_block(): raise ValueError("Value argument cannot be block type if pointer argument is not a block") if mask and mask.type.is_block(): raise ValueError("Mask argument cannot be block type if pointer argument is not a block") # Make `mask` and `val` into the same shape as `ptr` if ptr.type.is_block(): val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder) if mask is not None: mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder) ptr_ty = ptr.type.scalar elt_ty = ptr_ty.element_ty # Treat `pointer_type` as `pointer_type` if elt_ty == tl.int1: elt_ty = tl.int8 ptr_ty = tl.pointer_type(elt_ty, ptr_ty.address_space) ptr = cast(ptr, ptr_ty, builder) # Cast to target data type val = cast(val, elt_ty, builder) # Build IR if not mask: return tl.tensor(builder.create_store(ptr.handle, val.handle, cache, eviction), tl.void) if not mask.type.scalar.is_bool(): raise ValueError("Mask must have boolean scalar type") return tl.tensor(builder.create_masked_store(ptr.handle, val.handle, mask.handle, cache, eviction), tl.void) def store(ptr: tl.tensor, val: tl.tensor, mask: Optional[tl.tensor], boundary_check, cache_modifier: str, eviction_policy: str, builder: ir.builder) -> tl.tensor: # Cache and eviction options cache = _str_to_store_cache_modifier(cache_modifier) eviction = _str_to_eviction_policy(eviction_policy) if ptr.type.is_const() or ptr.type.scalar.is_const(): raise ValueError("Cannot store to a constant pointer") if ptr.type.is_ptr() and ptr.type.element_ty.is_block(): # Store by a block pointer: `pointer_type>` return _store_block_pointer(ptr, val, mask, boundary_check, cache, eviction, builder) else: # Store by a tensor of pointers or a pointer of scalar: `block_type>` or `pointer_type<>` return _store_legacy(ptr, val, mask, boundary_check, cache, eviction, builder) ######### # atomic ######### def atomic_cas(ptr: tl.tensor, cmp: tl.tensor, val: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: sem = _str_to_sem(sem) scope = _str_to_scope(scope) element_ty = ptr.type.scalar.element_ty if element_ty.primitive_bitwidth not in [16, 32, 64]: raise ValueError("atomic_cas only supports elements with width {16, 32, 64}") return tl.tensor(builder.create_atomic_cas(ptr.handle, cmp.handle, val.handle, sem, scope), val.type) def atom_red_typechecking_impl(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, op: str, builder: ir.builder) -> Tuple[tl.tensor, tl.tensor, tl.tensor]: if not ptr.type.scalar.is_ptr(): raise ValueError("Pointer argument of store instruction is " + ptr.type.__repr__()) if ptr.type.is_const() or ptr.type.element_ty.is_const(): raise ValueError("Cannot store to a constant pointer") element_ty = ptr.type.scalar.element_ty if element_ty is tl.float16 and op != 'add': raise ValueError("atomic_" + op + " does not support fp16") if element_ty in [tl.int1, tl.int8, tl.int16, tl.bfloat16]: raise ValueError("atomic_" + op + " does not support " + str(element_ty)) if ptr.type.is_block(): if mask is not None: mask = broadcast_impl_shape(mask, ptr.type.get_block_shapes(), builder) if val is not None: val = broadcast_impl_shape(val, ptr.type.get_block_shapes(), builder) val = cast(val, ptr.type.scalar.element_ty, builder) if not mask: mask_ir = builder.get_int1(True) mask_ty = tl.int1 if ptr.type.is_block(): mask_ir = builder.create_splat(mask_ir, ptr.type.get_block_shapes()) mask_ty = tl.block_type(tl.int1, ptr.type.get_block_shapes()) mask = tl.tensor(mask_ir, mask_ty) return ptr, val, mask def atomic_max(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'max', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) sca_ty = val.type.scalar # direct call to atomic_max for integers if sca_ty.is_int(): if sca_ty.is_int_signed(): return tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type) else: return tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ptr.handle, val.handle, mask.handle, sem, scope), val.type) # for float # return atomic_smax(i_ptr, i_val) if val >= 0 # return atomic_umin(i_ptr, i_val) if val < 0 if sca_ty not in {tl.float32, tl.float64}: raise TypeError(f"atomic_max not supported for dtype {sca_ty}") zero = full([], 0.0, sca_ty, builder) i_type = tl.int32 if sca_ty == tl.float32 else tl.int64 i_val = bitcast(val, i_type, builder) i_ptr = bitcast(ptr, tl.pointer_type(i_type, 1), builder) ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64 ui_val = bitcast(val, ui_type, builder) ui_ptr = bitcast(ptr, tl.pointer_type(ui_type, 1), builder) pos = greater_equal(val, zero, builder) neg = less_than(val, zero, builder) pos_ret = tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.MAX, i_ptr.handle, i_val.handle, and_(mask, pos, builder).handle, sem, scope), i_val.type) neg_ret = tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ui_ptr.handle, ui_val.handle, and_(mask, neg, builder).handle, sem, scope), ui_val.type) ret = where(pos, pos_ret, neg_ret, builder) return bitcast(ret, sca_ty, builder) def atomic_min(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'min', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) sca_ty = val.type.scalar # direct call to atomic_min for integers if sca_ty.is_int(): if sca_ty.is_int_signed(): return tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type) else: return tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.UMIN, ptr.handle, val.handle, mask.handle, sem, scope), val.type) # for float # return atomic_smin(i_ptr, i_val) if val >= 0 # return atomic_umax(i_ptr, i_val) if val < 0 if sca_ty not in {tl.float32, tl.float64}: raise TypeError(f"atomic_min not supported for dtype {sca_ty}") zero = full([], 0.0, sca_ty, builder) i_type = tl.int32 if sca_ty == tl.float32 else tl.int64 i_val = bitcast(val, i_type, builder) i_ptr = bitcast(ptr, tl.pointer_type(i_type, 1), builder) ui_type = tl.uint32 if sca_ty == tl.float32 else tl.uint64 ui_val = bitcast(val, ui_type, builder) ui_ptr = bitcast(ptr, tl.pointer_type(ui_type, 1), builder) pos = greater_equal(val, zero, builder) neg = less_than(val, zero, builder) pos_ret = tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.MIN, i_ptr.handle, i_val.handle, and_(mask, pos, builder).handle, sem, scope), i_val.type) neg_ret = tl.tensor( builder.create_atomic_rmw(ir.ATOMIC_OP.UMAX, ui_ptr.handle, ui_val.handle, and_(mask, neg, builder).handle, sem, scope), ui_ptr.type) ret = where(pos, pos_ret, neg_ret, builder) return bitcast(ret, sca_ty, builder) def atomic_add(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'add', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) sca_ty = val.type.scalar op = ir.ATOMIC_OP.FADD if sca_ty.is_floating() else ir.ATOMIC_OP.ADD return tl.tensor(builder.create_atomic_rmw(op, ptr.handle, val.handle, mask.handle, sem, scope), val.type) def atomic_and(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'and', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.AND, ptr.handle, val.handle, mask.handle, sem, scope), val.type) def atomic_or(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'or', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.OR, ptr.handle, val.handle, mask.handle, sem, scope), val.type) def atomic_xor(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xor', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XOR, ptr.handle, val.handle, mask.handle, sem, scope), val.type) def atomic_xchg(ptr: tl.tensor, val: tl.tensor, mask: tl.tensor, sem: str, scope: str, builder: ir.builder) -> tl.tensor: ptr, val, mask = atom_red_typechecking_impl(ptr, val, mask, 'xchg', builder) sem = _str_to_sem(sem) scope = _str_to_scope(scope) return tl.tensor(builder.create_atomic_rmw(ir.ATOMIC_OP.XCHG, ptr.handle, val.handle, mask.handle, sem, scope), val.type) # ===----------------------------------------------------------------------===// # Linear Algebra # ===----------------------------------------------------------------------===// def _str_to_dot_input_precision(input_precision, builder): assert input_precision.lower() in builder.options.allowed_dot_input_precisions, \ f"input_precision must be one of {builder.options.allowed_dot_input_precisions}. Got {input_precision}" input_precision = input_precision.upper() if input_precision == "TF32X3": input_precision = "TF32x3" return getattr(ir.INPUT_PRECISION, input_precision) def dot(lhs: tl.tensor, rhs: tl.tensor, acc: tl.tensor, input_precision: Optional[str], max_num_imprecise_acc: int, out_dtype: tl.dtype, builder: ir.builder) -> tl.tensor: def assert_dtypes_valid(lhs_dtype, rhs_dtype, options): if not options.allow_fp8e4nv: assert not lhs_dtype.is_fp8e4nv() and not rhs_dtype.is_fp8e4nv( ), "Dot op does not support fp8e4nv on CUDA arch < 90" if lhs_dtype.is_fp8() and rhs_dtype.is_fp8(): return assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!" else: if lhs_dtype.is_int() or rhs_dtype.is_int(): assert lhs_dtype == rhs_dtype, f"Both operands must be same type. First operand ({lhs_dtype}) and second operand ({rhs_dtype})" assert lhs_dtype.is_int8() or lhs_dtype.is_uint8( ), f"Both operands must be either int8 or uint8. Operand type ({lhs_dtype})" elif lhs_dtype.is_fp8() or rhs_dtype.is_fp8(): if options.allow_fp8e4b15: allowed_types = ['fp8e4nv', 'fp8e5', 'fp8e4b15'] else: allowed_types = ['fp8e4nv', 'fp8e5'] def _validate_dtype(dtype, allowed_types, operand_name): if not any(getattr(dtype, f'is_{dtype_name}')() for dtype_name in allowed_types): supported_types = ', '.join(allowed_types) raise AssertionError(f"Only supports {supported_types}. {operand_name} ({dtype})") _validate_dtype(lhs_dtype, allowed_types, "First operand") _validate_dtype(rhs_dtype, allowed_types, "Second operand") else: assert lhs_dtype.is_fp16() or lhs_dtype.is_bf16() or lhs_dtype.is_fp32() or lhs_dtype.is_int1( ), f"Unsupported dtype {lhs_dtype}" assert rhs_dtype.is_fp16() or rhs_dtype.is_bf16() or rhs_dtype.is_fp32() or rhs_dtype.is_int1( ), f"Unsupported dtype {rhs_dtype}" assert lhs_dtype == rhs_dtype, f"First input ({lhs_dtype}) and second input ({rhs_dtype}) must have the same dtype!" assert lhs.type.is_block() and rhs.type.is_block() assert_dtypes_valid(lhs.dtype, rhs.dtype, builder.options) if lhs.dtype.is_fp8e4b15() or rhs.dtype.is_fp8e4b15(): lhs = cast(lhs, tl.float16, builder) rhs = cast(rhs, tl.float16, builder) if input_precision is None: input_precision = builder.options.default_dot_input_precision input_precision = _str_to_dot_input_precision(input_precision, builder) lhs_rank = len(lhs.shape) rhs_rank = len(rhs.shape) assert lhs_rank == rhs_rank == 2 or lhs_rank == rhs_rank == 3, f"Both inputs must be either 2D or 3D; (lhs: {lhs.shape} vs rhs: {rhs.shape})" assert lhs.shape[-1].value == rhs.shape[ -2].value, f"First input shape ({lhs.shape}) and second input shape {rhs.shape} are not compatible for matmul (second index of first shape ({lhs.shape[-1].value}) must be equal to first index of second shape ({rhs.shape[-2].value})" assert lhs.shape[-2].value >= 16 and lhs.shape[-1].value >= 16 \ and rhs.shape[-1].value >= 16, \ f"All non-batch values in both first input shape ({lhs.shape}) and second input shape ({rhs.shape}) must be >= 16!" if lhs.type.scalar.is_int(): assert lhs.type.scalar == tl.int8, "only int8 supported!" # TODO: This is CUDA specific, check if ROCm has the same limitation assert lhs.shape[1].value >= 32, "small blocks not supported!" _0 = builder.get_int32(0) ret_scalar_ty = tl.int32 elif out_dtype.is_bf16(): raise ValueError( "out_dtype=bfloat16 is unsupported. Please use out_dtype=float32/float16 and cast with `.to(tl.bfloat16)`") elif lhs.type.scalar.is_fp32() or lhs.type.scalar.is_bf16(): _0 = builder.get_fp32(0) ret_scalar_ty = tl.float32 else: _0 = builder.get_fp16(0) if out_dtype.is_fp16() else builder.get_fp32(0) ret_scalar_ty = out_dtype M = lhs.type.shape[-2] N = rhs.type.shape[-1] B = lhs.type.shape[0] if lhs_rank == 3 else None ret_ty = tl.block_type(ret_scalar_ty, [B, M, N] if B else [M, N]) if acc is None: acc_handle = builder.create_splat(_0, [B, M, N] if B else [M, N]) else: acc_handle = acc.handle assert acc.type == ret_ty # max_num_imprecise_acc only applies to fp8 -> fp32 dot on sm_90 if max_num_imprecise_acc is None: if lhs.dtype.is_fp8() and rhs.dtype.is_fp8(): max_num_imprecise_acc = builder.options.max_num_imprecise_acc_default else: max_num_imprecise_acc = 0 return tl.tensor(builder.create_dot(lhs.handle, rhs.handle, acc_handle, input_precision, max_num_imprecise_acc), ret_ty) # ===----------------------------------------------------------------------===// # Indexing # ===----------------------------------------------------------------------===// def where(condition: tl.tensor, x: tl.tensor, y: tl.tensor, builder: ir.builder) -> tl.tensor: condition = cast(condition, tl.int1, builder) if condition.type.is_block(): condition, x = broadcast_impl_value(condition, x, builder) x, y = broadcast_impl_value(x, y, builder) condition, x = broadcast_impl_value(condition, x, builder) x, y = binary_op_type_checking_impl(x, y, builder, True, True) if not condition.type.is_block(): condition, _ = broadcast_impl_value(condition, x, builder) ret_ty = x.type return tl.tensor(builder.create_select(condition.handle, x.handle, y.handle), ret_ty) # ===----------------------------------------------------------------------===// # Reduction # ===----------------------------------------------------------------------=== def wrap_tensor(x, scalar_ty, ret_shape): if ret_shape: res_ty = tl.block_type(scalar_ty, ret_shape) else: # 0d-tensor -> scalar res_ty = scalar_ty return tl.tensor(x, res_ty) def reduction(inputs: Sequence[tl.tensor], axis: int, region_builder_fn, builder: ir.builder) -> Tuple[tl.tensor, ...]: if axis is None: inputs = tuple(reshape(t, [t.numel.value], can_reorder=True, builder=builder) for t in inputs) axis = 0 # get result shape shape = inputs[0].type.shape rank = len(shape) assert axis < rank, f"reduction axis must be < inputs rank ({rank})" ret_shape = [s for i, s in enumerate(shape) if i != axis] assert all(t.type.shape == shape for t in inputs), "all reduction inputs must have the same shape" reduce_op = builder.create_reduce([t.handle for t in inputs], axis) region_builder_fn(reduce_op) reduce_op.verify() return tuple(wrap_tensor(reduce_op.get_result(i), inputs[i].type.scalar, ret_shape) for i in range(len(inputs))) # ===----------------------------------------------------------------------=== # Associative Scan # ===----------------------------------------------------------------------=== def associative_scan(inputs: Sequence[tl.tensor], axis: int, region_builder_fn, reverse: bool, builder: ir.builder) -> Tuple[tl.tensor, ...]: shape = inputs[0].type.shape rank = len(shape) assert -rank <= axis < rank, f"scan axis {axis} must be < inputs rank ({rank})" if axis < 0: axis += rank for t in inputs: assert t.type.shape == shape, "all scan inputs must have the same shape" scan_op = builder.create_scan([t.handle for t in inputs], axis, reverse) region_builder_fn(scan_op) scan_op.verify() return tuple(wrap_tensor(scan_op.get_result(i), inputs[i].type.scalar, shape) for i in range(len(inputs))) # ===----------------------------------------------------------------------=== # Histogram # ===----------------------------------------------------------------------=== def histogram(input: tl.tensor, num_bins: int, builder: ir.builder) -> tl.tensor: assert len(input.shape) == 1, "histogram only supports 1D input" assert input.dtype.is_int(), "histogram only supports integer input" return tl.tensor(builder.create_histogram(input.handle, num_bins), tl.block_type(tl.int32, (num_bins, ))) ## def multiple_of(x: tl.tensor, values: List[int]) -> tl.tensor: if max(1, len(x.shape)) != len(values): raise ValueError("Shape of input to multiple_of does not match the length of values") x.handle.set_attr("tt.divisibility", ir.make_attr(values, x.handle.get_context())) return x def max_contiguous(x: tl.tensor, values: List[int]) -> tl.tensor: if len(x.shape) != len(values): raise ValueError("Shape of input to max_contiguous does not match the length of values") x.handle.set_attr("tt.contiguity", ir.make_attr(values, x.handle.get_context())) return x def max_constancy(x: tl.tensor, values: List[int]) -> tl.tensor: if len(x.shape) != len(values): raise ValueError("Shape of input to max_constancy does not match the length of values") x.handle.set_attr("tt.constancy", ir.make_attr(values, x.handle.get_context())) return x def debug_barrier(builder: ir.builder) -> tl.tensor: return tl.tensor(builder.create_barrier(), tl.void) def device_print(prefix: str, args: List[tl.tensor], hex: bool, builder: ir.builder) -> tl.tensor: # It makes sense visually for prefix to end in ": "; make it so. Also, # non-empty prefixes should start with " ". if not prefix.endswith(" ") and args: prefix += " " if not prefix.endswith(": ") and args: prefix = prefix[:-1] + ": " if len(prefix) > 2 and not prefix.startswith(" "): prefix = " " + prefix new_args = [arg.handle for arg in args] return tl.tensor(builder.create_print(prefix, hex, new_args), tl.void) def device_assert(cond: tl.tensor, msg: str, file_name: str, func_name, lineno: int, builder: ir.builder) -> tl.tensor: cond_ty = cond.type if not cond_ty.is_block(): cond_ty = tl.block_type(cond_ty.scalar, (1, )) cond = tl.tensor(builder.create_splat(cond.handle, (1, )), cond_ty) return tl.tensor(builder.create_assert(cond.handle, msg, file_name, func_name, lineno), tl.void) def _convert_elem_to_ir_value(builder, elem, require_i64): if isinstance(elem, int): elem = tl.constexpr(elem) if isinstance(elem, tl.constexpr): if require_i64: assert -2**63 <= elem.value < 2**63, f"Block pointers only support 64 bit `shape/strides`, " \ f"got a value {elem.value} which is out of the range" return builder.get_int64(elem.value) else: assert -2**31 <= elem.value < 2**31, f"Block pointers only support 32 bit `offsets/block_shape`, " \ f"got a value {elem.value} which is out of the range" return builder.get_int32(elem.value) elif isinstance(elem, tl.tensor): assert elem.numel.value == 1, "Expected a scalar in shape/strides/offsets" assert elem.dtype.is_int(), "Expected an integer scalar type in shape/strides/offsets" if elem.dtype != tl.int64 and require_i64: return builder.create_int_cast(elem.handle, builder.get_int64_ty(), elem.dtype.is_int_signed()) elif elem.dtype != tl.int32 and not require_i64: assert False, "Block pointers only support 32 bit `offsets/block_shape`, " \ "add a `.to(tl.int32)` or use regular indexing for 64 bit support" return elem.handle assert False, f"Unsupported element type in shape/strides/offsets: {type(elem)}" def _convert_to_ir_values(builder, list_like, require_i64=True): if hasattr(list_like, "__iter__"): return [_convert_elem_to_ir_value(builder, elem, require_i64) for elem in list_like] return [_convert_elem_to_ir_value(builder, list_like, require_i64)] def make_block_ptr(base: tl.tensor, shape, strides, offsets, block_shape, order, builder: ir.builder) -> tl.tensor: # Convert dynamic arguments to IR values # NOTES(Chenggang): current `shape/strides` are `int64_t`, while `offsets/block_shape` are `int32_t` shape = _convert_to_ir_values(builder, shape) strides = _convert_to_ir_values(builder, strides) offsets = _convert_to_ir_values(builder, offsets, require_i64=False) # Check `base` type if not base.type.is_ptr() or base.type.element_ty.is_block(): raise ValueError("Expected `base` to be a pointer type (but not a block pointer type or others)") # Treat `pointer_type` as `pointer_type` if base.type.element_ty == tl.int1: base = cast(base, tl.pointer_type(tl.int8, base.type.address_space), builder) # Check whether `block_shape` is static if not hasattr(block_shape, "__iter__"): block_shape = [block_shape] block_shape = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in block_shape] assert all(isinstance(elem, int) and -2**31 <= elem < 2**31 for elem in block_shape), \ "Expected a list of constant integers (`int32_t` range) in `block_shape`" # Check `order` if not hasattr(order, "__iter__"): order = [order] order = [elem.value if isinstance(elem, tl.constexpr) else elem for elem in order] assert sorted(order) == list(range(len(order))), "Expected a permutation of (0, 1, ..., len(order)-1) in order" # Must have same length assert all(len(block_shape) == len(list_like) for list_like in [shape, strides, offsets, order]), \ "Expected shape/strides/offsets/block_shape to have the same length" # Build value, the type is: # `pointer_type>` in Python # `tt.ptr>` in MLIR handle = builder.create_make_block_ptr(base.handle, shape, strides, offsets, block_shape, order) return tl.tensor(handle, tl.pointer_type(tl.block_type(base.type.element_ty, block_shape))) def advance(base: tl.tensor, offsets, builder: ir.builder) -> tl.tensor: # Convert dynamic offsets to IR values offsets = _convert_to_ir_values(builder, offsets, require_i64=False) # Advanced block pointer type is the same as before return tl.tensor(builder.create_advance(base.handle, offsets), base.type)